Matches in SemOpenAlex for { <https://semopenalex.org/work/W2757221062> ?p ?o ?g. }
- W2757221062 endingPage "220.e6" @default.
- W2757221062 startingPage "212" @default.
- W2757221062 abstract "Ribosome stalling is manifested by the local accumulation of ribosomes at specific codon positions of mRNAs. Here, we present ROSE, a deep learning framework to analyze high-throughput ribosome profiling data and estimate the probability of a ribosome stalling event occurring at each genomic location. Extensive validation tests on independent data demonstrated that ROSE possessed higher prediction accuracy than conventional prediction models, with an increase in the area under the receiver operating characteristic curve by up to 18.4%. In addition, genome-wide statistical analyses showed that ROSE predictions can be well correlated with diverse putative regulatory factors of ribosome stalling. Moreover, the genome-wide ribosome stalling landscapes of both human and yeast computed by ROSE recovered the functional interplays between ribosome stalling and cotranslational events in protein biogenesis, including protein targeting by the signal recognition particles and protein secondary structure formation. Overall, our study provides a novel method to complement the ribosome profiling techniques and further decipher the complex regulatory mechanisms underlying translation elongation dynamics encoded in the mRNA sequence." @default.
- W2757221062 created "2017-10-06" @default.
- W2757221062 creator A5009826239 @default.
- W2757221062 creator A5032264417 @default.
- W2757221062 creator A5034035432 @default.
- W2757221062 creator A5046702976 @default.
- W2757221062 creator A5068072367 @default.
- W2757221062 creator A5091112923 @default.
- W2757221062 date "2017-09-01" @default.
- W2757221062 modified "2023-10-14" @default.
- W2757221062 title "Analysis of Ribosome Stalling and Translation Elongation Dynamics by Deep Learning" @default.
- W2757221062 cites W1019830208 @default.
- W2757221062 cites W1196894603 @default.
- W2757221062 cites W1498436455 @default.
- W2757221062 cites W1539868719 @default.
- W2757221062 cites W1565619177 @default.
- W2757221062 cites W1758870984 @default.
- W2757221062 cites W1879501137 @default.
- W2757221062 cites W1941339056 @default.
- W2757221062 cites W1951403192 @default.
- W2757221062 cites W1966778471 @default.
- W2757221062 cites W1968202347 @default.
- W2757221062 cites W1976515682 @default.
- W2757221062 cites W1976954198 @default.
- W2757221062 cites W1980780093 @default.
- W2757221062 cites W1983859619 @default.
- W2757221062 cites W1988581590 @default.
- W2757221062 cites W1991807334 @default.
- W2757221062 cites W2008708467 @default.
- W2757221062 cites W2018590530 @default.
- W2757221062 cites W2022726657 @default.
- W2757221062 cites W2025445920 @default.
- W2757221062 cites W2025569664 @default.
- W2757221062 cites W2044286001 @default.
- W2757221062 cites W2046872786 @default.
- W2757221062 cites W2052326665 @default.
- W2757221062 cites W2055043387 @default.
- W2757221062 cites W2058852389 @default.
- W2757221062 cites W2062821957 @default.
- W2757221062 cites W2065371606 @default.
- W2757221062 cites W2068065584 @default.
- W2757221062 cites W2068628419 @default.
- W2757221062 cites W2075839343 @default.
- W2757221062 cites W2079517684 @default.
- W2757221062 cites W2082047304 @default.
- W2757221062 cites W2086157203 @default.
- W2757221062 cites W2086561953 @default.
- W2757221062 cites W2088338354 @default.
- W2757221062 cites W2089927164 @default.
- W2757221062 cites W2094338137 @default.
- W2757221062 cites W2096173343 @default.
- W2757221062 cites W2100495367 @default.
- W2757221062 cites W2105575738 @default.
- W2757221062 cites W2105694586 @default.
- W2757221062 cites W2107804881 @default.
- W2757221062 cites W2112796928 @default.
- W2757221062 cites W2126096918 @default.
- W2757221062 cites W2136441728 @default.
- W2757221062 cites W2136922672 @default.
- W2757221062 cites W2145203699 @default.
- W2757221062 cites W2148627082 @default.
- W2757221062 cites W2154232977 @default.
- W2757221062 cites W2158527336 @default.
- W2757221062 cites W2160815625 @default.
- W2757221062 cites W2162170988 @default.
- W2757221062 cites W2163922914 @default.
- W2757221062 cites W2163959161 @default.
- W2757221062 cites W2164045406 @default.
- W2757221062 cites W2168138973 @default.
- W2757221062 cites W2170513170 @default.
- W2757221062 cites W2175136759 @default.
- W2757221062 cites W2180404227 @default.
- W2757221062 cites W2198606573 @default.
- W2757221062 cites W2212528563 @default.
- W2757221062 cites W2261589691 @default.
- W2757221062 cites W2269056654 @default.
- W2757221062 cites W2306137721 @default.
- W2757221062 cites W2434834409 @default.
- W2757221062 cites W2529618169 @default.
- W2757221062 cites W2739999456 @default.
- W2757221062 cites W4231109964 @default.
- W2757221062 cites W4255594044 @default.
- W2757221062 cites W776567260 @default.
- W2757221062 doi "https://doi.org/10.1016/j.cels.2017.08.004" @default.
- W2757221062 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28957655" @default.
- W2757221062 hasPublicationYear "2017" @default.
- W2757221062 type Work @default.
- W2757221062 sameAs 2757221062 @default.
- W2757221062 citedByCount "52" @default.
- W2757221062 countsByYear W27572210622018 @default.
- W2757221062 countsByYear W27572210622019 @default.
- W2757221062 countsByYear W27572210622020 @default.
- W2757221062 countsByYear W27572210622021 @default.
- W2757221062 countsByYear W27572210622022 @default.
- W2757221062 countsByYear W27572210622023 @default.
- W2757221062 crossrefType "journal-article" @default.
- W2757221062 hasAuthorship W2757221062A5009826239 @default.
- W2757221062 hasAuthorship W2757221062A5032264417 @default.