Matches in SemOpenAlex for { <https://semopenalex.org/work/W2757382679> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2757382679 abstract "Wheat bugs are one of the most dangerous insect types for cereal plantations. These types of insect pests have a possibility of causing 100% product loss in wheat production. This insect type consists of members from Pentatomidea and Heterotoptera. Most notorious members of this group are known as sunn pest. This type of pest can be encountered on every plantation in Eurasia. Wheat bugs prefer plantations not only for feeding but also for breeding. In the absence of control measures, wheat plantations can become overpopulated with sunn pest. Recently cultural control and biological control studies have gained attention. These control method groups are preferred over chemical control, because of healthcare reasons. Moreover, integrated control methods can be projected as the feature of the pest control, as precision agriculture applications spread. Today, beginning from the spring, plant protection experts watch for sunn pest awakening to try to avoid possible sunn pest attack. Additionally, chemical poisons are sprayed on plantations for protection reasons. These hazardous insecticides are known to be seriously damaging to human health, fauna and flora. Therefore, precision techniques for spotting these pests gained undeniable importance. Audio detection, recognition and classification methods have been used for decision making about creatures. To present day, these methods are used on insects, pests, birds, reptiles etc. successfully. In this work, a successful sound detection algorithm is applied to sound recordings of different sunn pest classes on an embedded system. A capable microcomputer is programmed to perform segmentation, feature extraction and classification procedures. Mel Frequency Cepstral Coefficients (MFCC) and Line Spectral Frequencies (LSF) methods are applied for feature extraction. Following that, different classification algorithms such as k-Nearest Neighbors (kNN) and Support Vector Machine (SVM) are applied to feature vector set. The performances of the procedures are examined in the sense of accuracy, and time consumption." @default.
- W2757382679 created "2017-10-06" @default.
- W2757382679 creator A5045324814 @default.
- W2757382679 creator A5055077632 @default.
- W2757382679 date "2017-08-01" @default.
- W2757382679 modified "2023-09-25" @default.
- W2757382679 title "Embedded system application for sunn pest detection" @default.
- W2757382679 cites W1536112859 @default.
- W2757382679 cites W1572209271 @default.
- W2757382679 cites W1974652872 @default.
- W2757382679 cites W1986021947 @default.
- W2757382679 cites W2019232876 @default.
- W2757382679 cites W2043752858 @default.
- W2757382679 cites W2051906523 @default.
- W2757382679 cites W2119821739 @default.
- W2757382679 cites W2166615616 @default.
- W2757382679 cites W2494898460 @default.
- W2757382679 cites W2524374037 @default.
- W2757382679 cites W2524453432 @default.
- W2757382679 cites W2588400182 @default.
- W2757382679 cites W2613607025 @default.
- W2757382679 doi "https://doi.org/10.1109/agro-geoinformatics.2017.8047027" @default.
- W2757382679 hasPublicationYear "2017" @default.
- W2757382679 type Work @default.
- W2757382679 sameAs 2757382679 @default.
- W2757382679 citedByCount "2" @default.
- W2757382679 countsByYear W27573826792019 @default.
- W2757382679 countsByYear W27573826792022 @default.
- W2757382679 crossrefType "proceedings-article" @default.
- W2757382679 hasAuthorship W2757382679A5045324814 @default.
- W2757382679 hasAuthorship W2757382679A5055077632 @default.
- W2757382679 hasConcept C127413603 @default.
- W2757382679 hasConcept C22508944 @default.
- W2757382679 hasConcept C540442320 @default.
- W2757382679 hasConcept C54286561 @default.
- W2757382679 hasConcept C59822182 @default.
- W2757382679 hasConcept C6557445 @default.
- W2757382679 hasConcept C86803240 @default.
- W2757382679 hasConcept C88463610 @default.
- W2757382679 hasConceptScore W2757382679C127413603 @default.
- W2757382679 hasConceptScore W2757382679C22508944 @default.
- W2757382679 hasConceptScore W2757382679C540442320 @default.
- W2757382679 hasConceptScore W2757382679C54286561 @default.
- W2757382679 hasConceptScore W2757382679C59822182 @default.
- W2757382679 hasConceptScore W2757382679C6557445 @default.
- W2757382679 hasConceptScore W2757382679C86803240 @default.
- W2757382679 hasConceptScore W2757382679C88463610 @default.
- W2757382679 hasLocation W27573826791 @default.
- W2757382679 hasOpenAccess W2757382679 @default.
- W2757382679 hasPrimaryLocation W27573826791 @default.
- W2757382679 hasRelatedWork W2152276504 @default.
- W2757382679 hasRelatedWork W2185107149 @default.
- W2757382679 hasRelatedWork W2331084534 @default.
- W2757382679 hasRelatedWork W2354771237 @default.
- W2757382679 hasRelatedWork W2901322150 @default.
- W2757382679 hasRelatedWork W3000630070 @default.
- W2757382679 hasRelatedWork W3004405807 @default.
- W2757382679 hasRelatedWork W3006503658 @default.
- W2757382679 hasRelatedWork W3014032570 @default.
- W2757382679 hasRelatedWork W3021328942 @default.
- W2757382679 hasRelatedWork W3035757180 @default.
- W2757382679 hasRelatedWork W3041374243 @default.
- W2757382679 hasRelatedWork W3137816592 @default.
- W2757382679 hasRelatedWork W3172428536 @default.
- W2757382679 hasRelatedWork W2336986466 @default.
- W2757382679 hasRelatedWork W2775941863 @default.
- W2757382679 hasRelatedWork W2935612694 @default.
- W2757382679 hasRelatedWork W3130387540 @default.
- W2757382679 hasRelatedWork W3133243027 @default.
- W2757382679 hasRelatedWork W414905144 @default.
- W2757382679 isParatext "false" @default.
- W2757382679 isRetracted "false" @default.
- W2757382679 magId "2757382679" @default.
- W2757382679 workType "article" @default.