Matches in SemOpenAlex for { <https://semopenalex.org/work/W2757630188> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2757630188 abstract "Infectious diseases are studied to understand their spreading mechanisms, to evaluate control strategies and to predict the risk and course of future outbreaks. Because people only interact with a small number of individuals, and because the structure of these interactions matters for spreading processes, the pairwise relationships between individuals in a population can be usefully represented by a network. Although the underlying processes of transmission are different, the network approach can be used to study the spread of pathogens in a contact network or the spread of rumors in an online social network. We study simulated simple and complex epidemics on synthetic networks and on two empirical networks, a social / contact network in an Indian village and an online social network in the U.S. Our goal is to learn simultaneously about the spreading process parameters and the source node (first infected node) of the epidemic, given a fixed and known network structure, and observations about state of nodes at several points in time. Our inference scheme is based on approximate Bayesian computation (ABC), an inference technique for complex models with likelihood functions that are either expensive to evaluate or analytically intractable. ABC enables us to adopt a Bayesian approach to the problem despite the posterior distribution being very complex. The proposed methodology generally performs well and, somewhat counter-intuitively, the inference problem appears to be easier on more heterogeneous network topologies, which enhances its future applicability to real-world settings where few networks have homogeneous topologies." @default.
- W2757630188 created "2017-10-06" @default.
- W2757630188 creator A5030873840 @default.
- W2757630188 creator A5042185020 @default.
- W2757630188 creator A5060445865 @default.
- W2757630188 date "2017-09-26" @default.
- W2757630188 modified "2023-09-27" @default.
- W2757630188 title "Bayesian Inference of Network Epidemics" @default.
- W2757630188 hasPublicationYear "2017" @default.
- W2757630188 type Work @default.
- W2757630188 sameAs 2757630188 @default.
- W2757630188 citedByCount "0" @default.
- W2757630188 crossrefType "posted-content" @default.
- W2757630188 hasAuthorship W2757630188A5030873840 @default.
- W2757630188 hasAuthorship W2757630188A5042185020 @default.
- W2757630188 hasAuthorship W2757630188A5060445865 @default.
- W2757630188 hasConcept C107673813 @default.
- W2757630188 hasConcept C127413603 @default.
- W2757630188 hasConcept C136764020 @default.
- W2757630188 hasConcept C144024400 @default.
- W2757630188 hasConcept C149923435 @default.
- W2757630188 hasConcept C154945302 @default.
- W2757630188 hasConcept C155846161 @default.
- W2757630188 hasConcept C160234255 @default.
- W2757630188 hasConcept C184898388 @default.
- W2757630188 hasConcept C199845137 @default.
- W2757630188 hasConcept C2776214188 @default.
- W2757630188 hasConcept C2779377595 @default.
- W2757630188 hasConcept C2908647359 @default.
- W2757630188 hasConcept C31258907 @default.
- W2757630188 hasConcept C41008148 @default.
- W2757630188 hasConcept C4727928 @default.
- W2757630188 hasConcept C518677369 @default.
- W2757630188 hasConcept C62611344 @default.
- W2757630188 hasConcept C66938386 @default.
- W2757630188 hasConcept C68416499 @default.
- W2757630188 hasConceptScore W2757630188C107673813 @default.
- W2757630188 hasConceptScore W2757630188C127413603 @default.
- W2757630188 hasConceptScore W2757630188C136764020 @default.
- W2757630188 hasConceptScore W2757630188C144024400 @default.
- W2757630188 hasConceptScore W2757630188C149923435 @default.
- W2757630188 hasConceptScore W2757630188C154945302 @default.
- W2757630188 hasConceptScore W2757630188C155846161 @default.
- W2757630188 hasConceptScore W2757630188C160234255 @default.
- W2757630188 hasConceptScore W2757630188C184898388 @default.
- W2757630188 hasConceptScore W2757630188C199845137 @default.
- W2757630188 hasConceptScore W2757630188C2776214188 @default.
- W2757630188 hasConceptScore W2757630188C2779377595 @default.
- W2757630188 hasConceptScore W2757630188C2908647359 @default.
- W2757630188 hasConceptScore W2757630188C31258907 @default.
- W2757630188 hasConceptScore W2757630188C41008148 @default.
- W2757630188 hasConceptScore W2757630188C4727928 @default.
- W2757630188 hasConceptScore W2757630188C518677369 @default.
- W2757630188 hasConceptScore W2757630188C62611344 @default.
- W2757630188 hasConceptScore W2757630188C66938386 @default.
- W2757630188 hasConceptScore W2757630188C68416499 @default.
- W2757630188 hasLocation W27576301881 @default.
- W2757630188 hasOpenAccess W2757630188 @default.
- W2757630188 hasPrimaryLocation W27576301881 @default.
- W2757630188 hasRelatedWork W11432443 @default.
- W2757630188 hasRelatedWork W1502271687 @default.
- W2757630188 hasRelatedWork W1814670923 @default.
- W2757630188 hasRelatedWork W2002162676 @default.
- W2757630188 hasRelatedWork W2196748409 @default.
- W2757630188 hasRelatedWork W2263392086 @default.
- W2757630188 hasRelatedWork W2408612350 @default.
- W2757630188 hasRelatedWork W2725810391 @default.
- W2757630188 hasRelatedWork W2775703718 @default.
- W2757630188 hasRelatedWork W2789532392 @default.
- W2757630188 hasRelatedWork W281783498 @default.
- W2757630188 hasRelatedWork W2892580744 @default.
- W2757630188 hasRelatedWork W2906734491 @default.
- W2757630188 hasRelatedWork W2943438257 @default.
- W2757630188 hasRelatedWork W2963086602 @default.
- W2757630188 hasRelatedWork W2981315114 @default.
- W2757630188 hasRelatedWork W3004357879 @default.
- W2757630188 hasRelatedWork W3082572052 @default.
- W2757630188 hasRelatedWork W3154480910 @default.
- W2757630188 hasRelatedWork W57200368 @default.
- W2757630188 isParatext "false" @default.
- W2757630188 isRetracted "false" @default.
- W2757630188 magId "2757630188" @default.
- W2757630188 workType "article" @default.