Matches in SemOpenAlex for { <https://semopenalex.org/work/W2757631140> ?p ?o ?g. }
- W2757631140 endingPage "e1005662" @default.
- W2757631140 startingPage "e1005662" @default.
- W2757631140 abstract "Learning causal networks from large-scale genomic data remains challenging in absence of time series or controlled perturbation experiments. We report an information- theoretic method which learns a large class of causal or non-causal graphical models from purely observational data, while including the effects of unobserved latent variables, commonly found in many genomic datasets. Starting from a complete graph, the method iteratively removes dispensable edges, by uncovering significant information contributions from indirect paths, and assesses edge-specific confidences from randomization of available data. The remaining edges are then oriented based on the signature of causality in observational data. The approach and associated algorithm, miic, outperform earlier methods on a broad range of benchmark networks. Causal network reconstructions are presented at different biological size and time scales, from gene regulation in single cells to whole genome duplication in tumor development as well as long term evolution of vertebrates. Miic is publicly available at https://github.com/miicTeam/MIIC." @default.
- W2757631140 created "2017-10-06" @default.
- W2757631140 creator A5013032971 @default.
- W2757631140 creator A5026080595 @default.
- W2757631140 creator A5057014835 @default.
- W2757631140 creator A5057384291 @default.
- W2757631140 creator A5086939392 @default.
- W2757631140 date "2017-10-02" @default.
- W2757631140 modified "2023-10-18" @default.
- W2757631140 title "Learning causal networks with latent variables from multivariate information in genomic data" @default.
- W2757631140 cites W1517993545 @default.
- W2757631140 cites W1842792112 @default.
- W2757631140 cites W1965680102 @default.
- W2757631140 cites W1973638185 @default.
- W2757631140 cites W1975062332 @default.
- W2757631140 cites W1975551153 @default.
- W2757631140 cites W1975903971 @default.
- W2757631140 cites W1980971799 @default.
- W2757631140 cites W1982372752 @default.
- W2757631140 cites W1996351707 @default.
- W2757631140 cites W2000289311 @default.
- W2757631140 cites W2006554089 @default.
- W2757631140 cites W2012896813 @default.
- W2757631140 cites W2014139628 @default.
- W2757631140 cites W2016661249 @default.
- W2757631140 cites W2018256109 @default.
- W2757631140 cites W2018490621 @default.
- W2757631140 cites W2044702943 @default.
- W2757631140 cites W2045802318 @default.
- W2757631140 cites W2048505587 @default.
- W2757631140 cites W2051520313 @default.
- W2757631140 cites W2057652201 @default.
- W2757631140 cites W2058536769 @default.
- W2757631140 cites W2074766362 @default.
- W2757631140 cites W2075537604 @default.
- W2757631140 cites W2077478450 @default.
- W2757631140 cites W2086331397 @default.
- W2757631140 cites W2087601715 @default.
- W2757631140 cites W2095289434 @default.
- W2757631140 cites W2096283457 @default.
- W2757631140 cites W2105882193 @default.
- W2757631140 cites W2109108939 @default.
- W2757631140 cites W2115984935 @default.
- W2757631140 cites W2117692326 @default.
- W2757631140 cites W2118151336 @default.
- W2757631140 cites W2118961319 @default.
- W2757631140 cites W2122863289 @default.
- W2757631140 cites W2128985829 @default.
- W2757631140 cites W2132023322 @default.
- W2757631140 cites W2132555912 @default.
- W2757631140 cites W2133646845 @default.
- W2757631140 cites W2134652049 @default.
- W2757631140 cites W2135621733 @default.
- W2757631140 cites W2136453810 @default.
- W2757631140 cites W2137220794 @default.
- W2757631140 cites W2139708568 @default.
- W2757631140 cites W2141885858 @default.
- W2757631140 cites W2143891888 @default.
- W2757631140 cites W2143892509 @default.
- W2757631140 cites W2146705998 @default.
- W2757631140 cites W2146980885 @default.
- W2757631140 cites W2147629880 @default.
- W2757631140 cites W2148043260 @default.
- W2757631140 cites W2156273110 @default.
- W2757631140 cites W2164683872 @default.
- W2757631140 cites W2266420598 @default.
- W2757631140 cites W2280966365 @default.
- W2757631140 cites W2286864076 @default.
- W2757631140 cites W2460828264 @default.
- W2757631140 cites W2560367415 @default.
- W2757631140 cites W3103539622 @default.
- W2757631140 cites W4213240787 @default.
- W2757631140 cites W4320301318 @default.
- W2757631140 cites W873873667 @default.
- W2757631140 doi "https://doi.org/10.1371/journal.pcbi.1005662" @default.
- W2757631140 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5685645" @default.
- W2757631140 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28968390" @default.
- W2757631140 hasPublicationYear "2017" @default.
- W2757631140 type Work @default.
- W2757631140 sameAs 2757631140 @default.
- W2757631140 citedByCount "29" @default.
- W2757631140 countsByYear W27576311402017 @default.
- W2757631140 countsByYear W27576311402018 @default.
- W2757631140 countsByYear W27576311402019 @default.
- W2757631140 countsByYear W27576311402020 @default.
- W2757631140 countsByYear W27576311402021 @default.
- W2757631140 countsByYear W27576311402022 @default.
- W2757631140 countsByYear W27576311402023 @default.
- W2757631140 crossrefType "journal-article" @default.
- W2757631140 hasAuthorship W2757631140A5013032971 @default.
- W2757631140 hasAuthorship W2757631140A5026080595 @default.
- W2757631140 hasAuthorship W2757631140A5057014835 @default.
- W2757631140 hasAuthorship W2757631140A5057384291 @default.
- W2757631140 hasAuthorship W2757631140A5086939392 @default.
- W2757631140 hasBestOaLocation W27576311401 @default.
- W2757631140 hasConcept C105795698 @default.
- W2757631140 hasConcept C119857082 @default.
- W2757631140 hasConcept C121332964 @default.