Matches in SemOpenAlex for { <https://semopenalex.org/work/W2757830207> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2757830207 abstract "In this thesis I explore the benefits of adopting a Bayesian methodology when doing inference for generalized autoregressive score (GAS) models. Although analytical results regarding the form of the posterior or its conditional will generally not be available for this class of models, I show that for most simple GAS models several novel Markov chain Monte Carlo methods can be applied to enable accurate Bayesian inference in very reasonable time frames. I consider three illustrative empirical applications of GAS models where particular emphasize is placed on contrasting Bayesian inferences with those stemming from the traditional approach of estimating GAS models using the Maximum Likelihood (ML) method. I argue that there are certain complexities intrinsic to models in the GAS framework that can be dealt with far more naturally under a Bayesian methodology, such as (i) the non-nestedness of comparable models that arises as a consequence of the freedom of choice in scaling matrices and parametrization of GAS models and (ii) the “curse of dimensionality” problem that occurs primarily for multivariate GAS models. The logical Bayesian solution to the former is to apply Bayesian model comparison techniques - which I explore in the context of dynamic intensity factor models applied to credit rating data - whereas the later can be addressed by imposing additional structure on the parameter space using hierarchical prior setups - which I illustrate on a time-varying covariance GAS Student-t model. Additionally, I demonstrate how the typically high degree of non-linearity with which parameters enter the likelihood for GAS models cause slow convergence to the normal distribution for the parameters - as is highlighted for the Beta-Gen-t-EGARCH volatility model. Implying that considerable sample sizes are necessary to allow for valid appeals to the asymptotic convergence arguments used in ML estimation." @default.
- W2757830207 created "2017-10-06" @default.
- W2757830207 creator A5014792151 @default.
- W2757830207 date "2017-09-18" @default.
- W2757830207 modified "2023-09-24" @default.
- W2757830207 title "Bayesian Inference for Generalized Autoregressive Score Models" @default.
- W2757830207 hasPublicationYear "2017" @default.
- W2757830207 type Work @default.
- W2757830207 sameAs 2757830207 @default.
- W2757830207 citedByCount "0" @default.
- W2757830207 crossrefType "journal-article" @default.
- W2757830207 hasAuthorship W2757830207A5014792151 @default.
- W2757830207 hasConcept C107673813 @default.
- W2757830207 hasConcept C111030470 @default.
- W2757830207 hasConcept C111350023 @default.
- W2757830207 hasConcept C119857082 @default.
- W2757830207 hasConcept C149782125 @default.
- W2757830207 hasConcept C154945302 @default.
- W2757830207 hasConcept C159877910 @default.
- W2757830207 hasConcept C160234255 @default.
- W2757830207 hasConcept C33923547 @default.
- W2757830207 hasConcept C41008148 @default.
- W2757830207 hasConcept C71983512 @default.
- W2757830207 hasConceptScore W2757830207C107673813 @default.
- W2757830207 hasConceptScore W2757830207C111030470 @default.
- W2757830207 hasConceptScore W2757830207C111350023 @default.
- W2757830207 hasConceptScore W2757830207C119857082 @default.
- W2757830207 hasConceptScore W2757830207C149782125 @default.
- W2757830207 hasConceptScore W2757830207C154945302 @default.
- W2757830207 hasConceptScore W2757830207C159877910 @default.
- W2757830207 hasConceptScore W2757830207C160234255 @default.
- W2757830207 hasConceptScore W2757830207C33923547 @default.
- W2757830207 hasConceptScore W2757830207C41008148 @default.
- W2757830207 hasConceptScore W2757830207C71983512 @default.
- W2757830207 hasLocation W27578302071 @default.
- W2757830207 hasOpenAccess W2757830207 @default.
- W2757830207 hasPrimaryLocation W27578302071 @default.
- W2757830207 hasRelatedWork W1564611113 @default.
- W2757830207 hasRelatedWork W1580206276 @default.
- W2757830207 hasRelatedWork W1788616518 @default.
- W2757830207 hasRelatedWork W1907582664 @default.
- W2757830207 hasRelatedWork W2032074167 @default.
- W2757830207 hasRelatedWork W2034123708 @default.
- W2757830207 hasRelatedWork W2067568600 @default.
- W2757830207 hasRelatedWork W2078051489 @default.
- W2757830207 hasRelatedWork W2136097307 @default.
- W2757830207 hasRelatedWork W2603590941 @default.
- W2757830207 hasRelatedWork W2712681089 @default.
- W2757830207 hasRelatedWork W2770729853 @default.
- W2757830207 hasRelatedWork W2796180279 @default.
- W2757830207 hasRelatedWork W2904402607 @default.
- W2757830207 hasRelatedWork W3103714082 @default.
- W2757830207 hasRelatedWork W3122572879 @default.
- W2757830207 hasRelatedWork W3129837527 @default.
- W2757830207 hasRelatedWork W3140751257 @default.
- W2757830207 hasRelatedWork W48075682 @default.
- W2757830207 hasRelatedWork W599376124 @default.
- W2757830207 isParatext "false" @default.
- W2757830207 isRetracted "false" @default.
- W2757830207 magId "2757830207" @default.
- W2757830207 workType "article" @default.