Matches in SemOpenAlex for { <https://semopenalex.org/work/W2758272220> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2758272220 endingPage "012141" @default.
- W2758272220 startingPage "012141" @default.
- W2758272220 abstract "Forecasting of streamflow is one of the many ways that can contribute to better decision making for water resource management. The auto-regressive integrated moving average (ARIMA) model was selected in this research for monthly streamflow forecasting with enhancement made by pre-processing the data using singular spectrum analysis (SSA). This study also proposed an extension of the SSA technique to include a step where clustering was performed on the eigenvector pairs before reconstruction of the time series. The monthly streamflow data of Sungai Muda at Jeniang, Sungai Muda at Jambatan Syed Omar and Sungai Ketil at Kuala Pegang was gathered from the Department of Irrigation and Drainage Malaysia. A ratio of 9:1 was used to divide the data into training and testing sets. The ARIMA, SSA-ARIMA and Clustered SSA-ARIMA models were all developed in R software. Results from the proposed model are then compared to a conventional auto-regressive integrated moving average model using the root-mean-square error and mean absolute error values. It was found that the proposed model can outperform the conventional model." @default.
- W2758272220 created "2017-10-06" @default.
- W2758272220 creator A5006654203 @default.
- W2758272220 creator A5010334191 @default.
- W2758272220 creator A5048602064 @default.
- W2758272220 date "2017-09-01" @default.
- W2758272220 modified "2023-09-24" @default.
- W2758272220 title "Monthly streamflow forecasting with auto-regressive integrated moving average" @default.
- W2758272220 cites W1964617994 @default.
- W2758272220 cites W1998716437 @default.
- W2758272220 cites W2075533163 @default.
- W2758272220 cites W2091856607 @default.
- W2758272220 cites W2110060482 @default.
- W2758272220 cites W2144717556 @default.
- W2758272220 cites W2522147713 @default.
- W2758272220 cites W4232129301 @default.
- W2758272220 doi "https://doi.org/10.1088/1742-6596/890/1/012141" @default.
- W2758272220 hasPublicationYear "2017" @default.
- W2758272220 type Work @default.
- W2758272220 sameAs 2758272220 @default.
- W2758272220 citedByCount "1" @default.
- W2758272220 countsByYear W27582722202020 @default.
- W2758272220 crossrefType "journal-article" @default.
- W2758272220 hasAuthorship W2758272220A5006654203 @default.
- W2758272220 hasAuthorship W2758272220A5010334191 @default.
- W2758272220 hasAuthorship W2758272220A5048602064 @default.
- W2758272220 hasBestOaLocation W27582722201 @default.
- W2758272220 hasConcept C105795698 @default.
- W2758272220 hasConcept C126645576 @default.
- W2758272220 hasConcept C139945424 @default.
- W2758272220 hasConcept C151406439 @default.
- W2758272220 hasConcept C159877910 @default.
- W2758272220 hasConcept C175706884 @default.
- W2758272220 hasConcept C205649164 @default.
- W2758272220 hasConcept C24338571 @default.
- W2758272220 hasConcept C33923547 @default.
- W2758272220 hasConcept C41008148 @default.
- W2758272220 hasConcept C53739315 @default.
- W2758272220 hasConcept C58640448 @default.
- W2758272220 hasConcept C73555534 @default.
- W2758272220 hasConcept C82257358 @default.
- W2758272220 hasConceptScore W2758272220C105795698 @default.
- W2758272220 hasConceptScore W2758272220C126645576 @default.
- W2758272220 hasConceptScore W2758272220C139945424 @default.
- W2758272220 hasConceptScore W2758272220C151406439 @default.
- W2758272220 hasConceptScore W2758272220C159877910 @default.
- W2758272220 hasConceptScore W2758272220C175706884 @default.
- W2758272220 hasConceptScore W2758272220C205649164 @default.
- W2758272220 hasConceptScore W2758272220C24338571 @default.
- W2758272220 hasConceptScore W2758272220C33923547 @default.
- W2758272220 hasConceptScore W2758272220C41008148 @default.
- W2758272220 hasConceptScore W2758272220C53739315 @default.
- W2758272220 hasConceptScore W2758272220C58640448 @default.
- W2758272220 hasConceptScore W2758272220C73555534 @default.
- W2758272220 hasConceptScore W2758272220C82257358 @default.
- W2758272220 hasLocation W27582722201 @default.
- W2758272220 hasOpenAccess W2758272220 @default.
- W2758272220 hasPrimaryLocation W27582722201 @default.
- W2758272220 hasRelatedWork W10294716 @default.
- W2758272220 hasRelatedWork W10368213 @default.
- W2758272220 hasRelatedWork W1921739 @default.
- W2758272220 hasRelatedWork W2651036 @default.
- W2758272220 hasRelatedWork W4414904 @default.
- W2758272220 hasRelatedWork W683848 @default.
- W2758272220 hasRelatedWork W7096435 @default.
- W2758272220 hasRelatedWork W8098291 @default.
- W2758272220 hasRelatedWork W9477434 @default.
- W2758272220 hasRelatedWork W9530112 @default.
- W2758272220 hasVolume "890" @default.
- W2758272220 isParatext "false" @default.
- W2758272220 isRetracted "false" @default.
- W2758272220 magId "2758272220" @default.
- W2758272220 workType "article" @default.