Matches in SemOpenAlex for { <https://semopenalex.org/work/W2758286397> ?p ?o ?g. }
- W2758286397 endingPage "1013" @default.
- W2758286397 startingPage "1013" @default.
- W2758286397 abstract "The Caprivi basin in Namibia has been affected by severe flooding in recent years resulting in deaths, displacements and destruction of infrastructure. The negative consequences of these floods have emphasized the need for timely, accurate and objective information about the extent and location of affected areas. Due to the high temporal variability of flood events, Earth Observation (EO) data at high revisit frequency is preferred for accurate flood monitoring. Currently, EO data has either high temporal or coarse spatial resolution. Accurate methodologies for the estimation and monitoring of flooding extent using coarse spatial resolution optical image data are needed in order to capture spatial details in heterogeneous areas such as Caprivi. The objective of this work was the retrieval of the fractional abundance of water ( γ w ) by applying a new spectral indices-based unmixing algorithm to Medium Resolution Imaging Spectrometer Full Resolution (MERIS FR) data using a minimum number of spectral bands. These images are technically similar to the OLCI image data acquired by the Sentinel-3 satellite, which are to be systematically provided in the near future. The normalized difference wetness index (NDWI) was applied to delineate the water surface and combined with normalized difference vegetation index (NDVI) to account for emergent vegetation within the water bodies. The challenge to map flooded areas by applying spectral unmixing is the estimation of spectral endmembers, i.e., pure spectra of land cover features. In our study, we developed and applied a new unmixing method based on the use of an ensemble of spectral endmembers to capture and take into account spectral variability within each endmember. In our case study, forty realizations of the spectral endmembers gave a stable frequency distribution of γ w . Quality of the flood map derived from the Envisat MERIS (MERIS) data was assessed against high (30 m) spatial resolution Landsat Thematic Mapper (TM) images on two different dates (17 April 2008 and 22 May 2009) during which floods occurred. The findings show that both the spatial and the frequency distribution of the γ w extracted from the MERIS data were in good agreement with the high-resolution TM retrievals. The use of conventional linear unmixing, instead, applied using the entire available spectra for each image, resulted in relatively large differences between TM and MERIS retrievals." @default.
- W2758286397 created "2017-10-06" @default.
- W2758286397 creator A5009352255 @default.
- W2758286397 creator A5037198581 @default.
- W2758286397 creator A5057726514 @default.
- W2758286397 creator A5058702532 @default.
- W2758286397 creator A5071094661 @default.
- W2758286397 date "2017-09-30" @default.
- W2758286397 modified "2023-10-11" @default.
- W2758286397 title "A Spectral Unmixing Method with Ensemble Estimation of Endmembers: Application to Flood Mapping in the Caprivi Floodplain" @default.
- W2758286397 cites W1519694837 @default.
- W2758286397 cites W1606999916 @default.
- W2758286397 cites W1807107048 @default.
- W2758286397 cites W1967395374 @default.
- W2758286397 cites W1978617972 @default.
- W2758286397 cites W1983316600 @default.
- W2758286397 cites W1984096274 @default.
- W2758286397 cites W1995714011 @default.
- W2758286397 cites W1996850785 @default.
- W2758286397 cites W2000229595 @default.
- W2758286397 cites W2001970696 @default.
- W2758286397 cites W2016038790 @default.
- W2758286397 cites W2026132478 @default.
- W2758286397 cites W2046833859 @default.
- W2758286397 cites W2050804150 @default.
- W2758286397 cites W2053780847 @default.
- W2758286397 cites W2060384859 @default.
- W2758286397 cites W2061082263 @default.
- W2758286397 cites W2062815717 @default.
- W2758286397 cites W2074285020 @default.
- W2758286397 cites W2077509829 @default.
- W2758286397 cites W2088685593 @default.
- W2758286397 cites W2093572647 @default.
- W2758286397 cites W2096586519 @default.
- W2758286397 cites W2101678239 @default.
- W2758286397 cites W2107222994 @default.
- W2758286397 cites W2111752896 @default.
- W2758286397 cites W2144221821 @default.
- W2758286397 cites W2145087958 @default.
- W2758286397 cites W2150478416 @default.
- W2758286397 cites W2155096269 @default.
- W2758286397 cites W2156419330 @default.
- W2758286397 cites W2158776858 @default.
- W2758286397 cites W2163886442 @default.
- W2758286397 cites W2165056704 @default.
- W2758286397 cites W2166369115 @default.
- W2758286397 cites W2179031038 @default.
- W2758286397 cites W2254653100 @default.
- W2758286397 cites W2413911167 @default.
- W2758286397 cites W2465076769 @default.
- W2758286397 cites W2567487372 @default.
- W2758286397 cites W2593388048 @default.
- W2758286397 cites W2609355518 @default.
- W2758286397 cites W2611950400 @default.
- W2758286397 cites W2725735250 @default.
- W2758286397 cites W4233760599 @default.
- W2758286397 doi "https://doi.org/10.3390/rs9101013" @default.
- W2758286397 hasPublicationYear "2017" @default.
- W2758286397 type Work @default.
- W2758286397 sameAs 2758286397 @default.
- W2758286397 citedByCount "23" @default.
- W2758286397 countsByYear W27582863972018 @default.
- W2758286397 countsByYear W27582863972019 @default.
- W2758286397 countsByYear W27582863972020 @default.
- W2758286397 countsByYear W27582863972021 @default.
- W2758286397 countsByYear W27582863972022 @default.
- W2758286397 countsByYear W27582863972023 @default.
- W2758286397 crossrefType "journal-article" @default.
- W2758286397 hasAuthorship W2758286397A5009352255 @default.
- W2758286397 hasAuthorship W2758286397A5037198581 @default.
- W2758286397 hasAuthorship W2758286397A5057726514 @default.
- W2758286397 hasAuthorship W2758286397A5058702532 @default.
- W2758286397 hasAuthorship W2758286397A5071094661 @default.
- W2758286397 hasBestOaLocation W27582863971 @default.
- W2758286397 hasConcept C111368507 @default.
- W2758286397 hasConcept C121332964 @default.
- W2758286397 hasConcept C124967146 @default.
- W2758286397 hasConcept C127313418 @default.
- W2758286397 hasConcept C127413603 @default.
- W2758286397 hasConcept C1276947 @default.
- W2758286397 hasConcept C132651083 @default.
- W2758286397 hasConcept C142724271 @default.
- W2758286397 hasConcept C147176958 @default.
- W2758286397 hasConcept C1549246 @default.
- W2758286397 hasConcept C154945302 @default.
- W2758286397 hasConcept C155681218 @default.
- W2758286397 hasConcept C15744967 @default.
- W2758286397 hasConcept C159078339 @default.
- W2758286397 hasConcept C166957645 @default.
- W2758286397 hasConcept C183852935 @default.
- W2758286397 hasConcept C186594467 @default.
- W2758286397 hasConcept C205372480 @default.
- W2758286397 hasConcept C205649164 @default.
- W2758286397 hasConcept C2776133958 @default.
- W2758286397 hasConcept C2780648208 @default.
- W2758286397 hasConcept C33390570 @default.
- W2758286397 hasConcept C39432304 @default.
- W2758286397 hasConcept C41008148 @default.