Matches in SemOpenAlex for { <https://semopenalex.org/work/W2758333670> ?p ?o ?g. }
- W2758333670 endingPage "1170" @default.
- W2758333670 startingPage "1170" @default.
- W2758333670 abstract "<h3>Importance</h3> Age-related macular degeneration (AMD) affects millions of people throughout the world. The intermediate stage may go undetected, as it typically is asymptomatic. However, the preferred practice patterns for AMD recommend identifying individuals with this stage of the disease to educate how to monitor for the early detection of the choroidal neovascular stage before substantial vision loss has occurred and to consider dietary supplements that might reduce the risk of the disease progressing from the intermediate to the advanced stage. Identification, though, can be time-intensive and requires expertly trained individuals. <h3>Objective</h3> To develop methods for automatically detecting AMD from fundus images using a novel application of deep learning methods to the automated assessment of these images and to leverage artificial intelligence advances. <h3>Design, Setting, and Participants</h3> Deep convolutional neural networks that are explicitly trained for performing automated AMD grading were compared with an alternate deep learning method that used transfer learning and universal features and with a trained clinical grader. Age-related macular degeneration automated detection was applied to a 2-class classification problem in which the task was to distinguish the disease-free/early stages from the referable intermediate/advanced stages. Using several experiments that entailed different data partitioning, the performance of the machine algorithms and human graders in evaluating over 130 000 images that were deidentified with respect to age, sex, and race/ethnicity from 4613 patients against a gold standard included in the National Institutes of Health Age-related Eye Disease Study data set was evaluated. <h3>Main Outcomes and Measures</h3> Accuracy, receiver operating characteristics and area under the curve, and kappa score. <h3>Results</h3> The deep convolutional neural network method yielded accuracy (SD) that ranged between 88.4% (0.5%) and 91.6% (0.1%), the area under the receiver operating characteristic curve was between 0.94 and 0.96, and kappa coefficient (SD) between 0.764 (0.010) and 0.829 (0.003), which indicated a substantial agreement with the gold standard Age-related Eye Disease Study data set. <h3>Conclusions and Relevance</h3> Applying a deep learning–based automated assessment of AMD from fundus images can produce results that are similar to human performance levels. This study demonstrates that automated algorithms could play a role that is independent of expert human graders in the current management of AMD and could address the costs of screening or monitoring, access to health care, and the assessment of novel treatments that address the development or progression of AMD." @default.
- W2758333670 created "2017-10-06" @default.
- W2758333670 creator A5039879095 @default.
- W2758333670 creator A5050212922 @default.
- W2758333670 creator A5056998637 @default.
- W2758333670 creator A5065516958 @default.
- W2758333670 creator A5066296116 @default.
- W2758333670 creator A5078445265 @default.
- W2758333670 date "2017-11-01" @default.
- W2758333670 modified "2023-10-17" @default.
- W2758333670 title "Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks" @default.
- W2758333670 cites W109974915 @default.
- W2758333670 cites W1506449639 @default.
- W2758333670 cites W1901361661 @default.
- W2758333670 cites W1984817372 @default.
- W2758333670 cites W2037780881 @default.
- W2758333670 cites W2069110097 @default.
- W2758333670 cites W2095405787 @default.
- W2758333670 cites W2113083452 @default.
- W2758333670 cites W2134374023 @default.
- W2758333670 cites W2164777277 @default.
- W2758333670 cites W2401288801 @default.
- W2758333670 cites W2557738935 @default.
- W2758333670 cites W2580835947 @default.
- W2758333670 cites W2598520882 @default.
- W2758333670 cites W2738996050 @default.
- W2758333670 cites W2952436003 @default.
- W2758333670 cites W4252865652 @default.
- W2758333670 cites W4300233697 @default.
- W2758333670 doi "https://doi.org/10.1001/jamaophthalmol.2017.3782" @default.
- W2758333670 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5710387" @default.
- W2758333670 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28973096" @default.
- W2758333670 hasPublicationYear "2017" @default.
- W2758333670 type Work @default.
- W2758333670 sameAs 2758333670 @default.
- W2758333670 citedByCount "428" @default.
- W2758333670 countsByYear W27583336702017 @default.
- W2758333670 countsByYear W27583336702018 @default.
- W2758333670 countsByYear W27583336702019 @default.
- W2758333670 countsByYear W27583336702020 @default.
- W2758333670 countsByYear W27583336702021 @default.
- W2758333670 countsByYear W27583336702022 @default.
- W2758333670 countsByYear W27583336702023 @default.
- W2758333670 crossrefType "journal-article" @default.
- W2758333670 hasAuthorship W2758333670A5039879095 @default.
- W2758333670 hasAuthorship W2758333670A5050212922 @default.
- W2758333670 hasAuthorship W2758333670A5056998637 @default.
- W2758333670 hasAuthorship W2758333670A5065516958 @default.
- W2758333670 hasAuthorship W2758333670A5066296116 @default.
- W2758333670 hasAuthorship W2758333670A5078445265 @default.
- W2758333670 hasBestOaLocation W27583336701 @default.
- W2758333670 hasConcept C108583219 @default.
- W2758333670 hasConcept C118487528 @default.
- W2758333670 hasConcept C119767625 @default.
- W2758333670 hasConcept C119857082 @default.
- W2758333670 hasConcept C127413603 @default.
- W2758333670 hasConcept C147176958 @default.
- W2758333670 hasConcept C154945302 @default.
- W2758333670 hasConcept C2776391266 @default.
- W2758333670 hasConcept C2776403814 @default.
- W2758333670 hasConcept C2777286243 @default.
- W2758333670 hasConcept C2779093074 @default.
- W2758333670 hasConcept C41008148 @default.
- W2758333670 hasConcept C71924100 @default.
- W2758333670 hasConcept C81363708 @default.
- W2758333670 hasConceptScore W2758333670C108583219 @default.
- W2758333670 hasConceptScore W2758333670C118487528 @default.
- W2758333670 hasConceptScore W2758333670C119767625 @default.
- W2758333670 hasConceptScore W2758333670C119857082 @default.
- W2758333670 hasConceptScore W2758333670C127413603 @default.
- W2758333670 hasConceptScore W2758333670C147176958 @default.
- W2758333670 hasConceptScore W2758333670C154945302 @default.
- W2758333670 hasConceptScore W2758333670C2776391266 @default.
- W2758333670 hasConceptScore W2758333670C2776403814 @default.
- W2758333670 hasConceptScore W2758333670C2777286243 @default.
- W2758333670 hasConceptScore W2758333670C2779093074 @default.
- W2758333670 hasConceptScore W2758333670C41008148 @default.
- W2758333670 hasConceptScore W2758333670C71924100 @default.
- W2758333670 hasConceptScore W2758333670C81363708 @default.
- W2758333670 hasIssue "11" @default.
- W2758333670 hasLocation W27583336701 @default.
- W2758333670 hasLocation W27583336702 @default.
- W2758333670 hasLocation W27583336703 @default.
- W2758333670 hasLocation W27583336704 @default.
- W2758333670 hasOpenAccess W2758333670 @default.
- W2758333670 hasPrimaryLocation W27583336701 @default.
- W2758333670 hasRelatedWork W1993858618 @default.
- W2758333670 hasRelatedWork W2144810021 @default.
- W2758333670 hasRelatedWork W2297761292 @default.
- W2758333670 hasRelatedWork W2337926734 @default.
- W2758333670 hasRelatedWork W4206598487 @default.
- W2758333670 hasRelatedWork W4293437635 @default.
- W2758333670 hasRelatedWork W4310880831 @default.
- W2758333670 hasRelatedWork W4311257506 @default.
- W2758333670 hasRelatedWork W4320802194 @default.
- W2758333670 hasRelatedWork W4366224123 @default.
- W2758333670 hasVolume "135" @default.
- W2758333670 isParatext "false" @default.