Matches in SemOpenAlex for { <https://semopenalex.org/work/W2758406582> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2758406582 abstract "The realization problem asks: When does an algebraic complex arise, up to homotopy, from a geometric complex In the case of 2- dimensional algebraic complexes, this is equiv alent to the D2 problem, which asks when homological methods can distinguish between 2 and 3 dimensional complexes. We approach the realization problem (and hence the D2 problem) by classifying all pos sible algebraic 2- complexes and showing that they are realized. We show that if a dihedral group has order 2n, then the algebraic complexes over it are parametrized by their second homology groups, which we refer to as algebraic second homotopy groups. A cancellation theorem of Swan ( 11 ), then allows us to solve the realization problem for the group D{dollar}. Let X be a finite geometric 2- complex. Standard isomorphisms give 7r2(Ar) = H2(X Z), as modules over ni(X). Schanuel's lemma may then be used to show that the stable class of n2(X) is determined by k {lcub}X). We show how 7r3(X) maybe calculated similarly. Specif ically, we show that as a module over the fundamental group, (X) = S2{lcub}ir2{lcub}X)), where S2(ir2(X)) denotes the symmetric part of the module 7r2(X) z tt2(X). As a consequence, we are able to show that when the order of n (X) is odd, the stable class of 7r3(X) is also determined by ir {lcub}X). Given a closed, connected, orientable 5- dimensional manifold, with finite fundamen tal group, we may represent it, up to homotopy equivalence, by an algebraic complex. Poincare duality induces a homotopy equivalence between this algebraic complex and its dual. We consider how similar this homotopy equivalence may be made to the identity, (through appropriate choice of algebraic complex). We show that it can be taken to be the identity on 4 of the 6 terms of the chain complex. However, by finding a homological ob struction, we show that in general the homotopy equivalence may not be written as the identity." @default.
- W2758406582 created "2017-10-06" @default.
- W2758406582 creator A5012508079 @default.
- W2758406582 date "2007-02-28" @default.
- W2758406582 modified "2023-09-26" @default.
- W2758406582 title "Low dimensional algebraic complexes over integral group rings" @default.
- W2758406582 hasPublicationYear "2007" @default.
- W2758406582 type Work @default.
- W2758406582 sameAs 2758406582 @default.
- W2758406582 citedByCount "0" @default.
- W2758406582 crossrefType "dissertation" @default.
- W2758406582 hasAuthorship W2758406582A5012508079 @default.
- W2758406582 hasConcept C10138342 @default.
- W2758406582 hasConcept C104317684 @default.
- W2758406582 hasConcept C105795698 @default.
- W2758406582 hasConcept C114614502 @default.
- W2758406582 hasConcept C121332964 @default.
- W2758406582 hasConcept C134306372 @default.
- W2758406582 hasConcept C136119220 @default.
- W2758406582 hasConcept C147688034 @default.
- W2758406582 hasConcept C162324750 @default.
- W2758406582 hasConcept C165525559 @default.
- W2758406582 hasConcept C182306322 @default.
- W2758406582 hasConcept C185592680 @default.
- W2758406582 hasConcept C202444582 @default.
- W2758406582 hasConcept C2781089630 @default.
- W2758406582 hasConcept C2781311116 @default.
- W2758406582 hasConcept C33923547 @default.
- W2758406582 hasConcept C55493867 @default.
- W2758406582 hasConcept C5961521 @default.
- W2758406582 hasConcept C62520636 @default.
- W2758406582 hasConcept C72409365 @default.
- W2758406582 hasConcept C9376300 @default.
- W2758406582 hasConceptScore W2758406582C10138342 @default.
- W2758406582 hasConceptScore W2758406582C104317684 @default.
- W2758406582 hasConceptScore W2758406582C105795698 @default.
- W2758406582 hasConceptScore W2758406582C114614502 @default.
- W2758406582 hasConceptScore W2758406582C121332964 @default.
- W2758406582 hasConceptScore W2758406582C134306372 @default.
- W2758406582 hasConceptScore W2758406582C136119220 @default.
- W2758406582 hasConceptScore W2758406582C147688034 @default.
- W2758406582 hasConceptScore W2758406582C162324750 @default.
- W2758406582 hasConceptScore W2758406582C165525559 @default.
- W2758406582 hasConceptScore W2758406582C182306322 @default.
- W2758406582 hasConceptScore W2758406582C185592680 @default.
- W2758406582 hasConceptScore W2758406582C202444582 @default.
- W2758406582 hasConceptScore W2758406582C2781089630 @default.
- W2758406582 hasConceptScore W2758406582C2781311116 @default.
- W2758406582 hasConceptScore W2758406582C33923547 @default.
- W2758406582 hasConceptScore W2758406582C55493867 @default.
- W2758406582 hasConceptScore W2758406582C5961521 @default.
- W2758406582 hasConceptScore W2758406582C62520636 @default.
- W2758406582 hasConceptScore W2758406582C72409365 @default.
- W2758406582 hasConceptScore W2758406582C9376300 @default.
- W2758406582 hasLocation W27584065821 @default.
- W2758406582 hasOpenAccess W2758406582 @default.
- W2758406582 hasPrimaryLocation W27584065821 @default.
- W2758406582 hasRelatedWork W1623758707 @default.
- W2758406582 hasRelatedWork W1977910065 @default.
- W2758406582 hasRelatedWork W1991482543 @default.
- W2758406582 hasRelatedWork W2014479140 @default.
- W2758406582 hasRelatedWork W2078021370 @default.
- W2758406582 hasRelatedWork W2126525029 @default.
- W2758406582 hasRelatedWork W2486562177 @default.
- W2758406582 hasRelatedWork W2488012870 @default.
- W2758406582 hasRelatedWork W2892754586 @default.
- W2758406582 hasRelatedWork W2901562024 @default.
- W2758406582 hasRelatedWork W2903678182 @default.
- W2758406582 hasRelatedWork W2953217401 @default.
- W2758406582 hasRelatedWork W3030416625 @default.
- W2758406582 hasRelatedWork W3035276841 @default.
- W2758406582 hasRelatedWork W3102090527 @default.
- W2758406582 hasRelatedWork W3103877949 @default.
- W2758406582 hasRelatedWork W3105106008 @default.
- W2758406582 hasRelatedWork W3105619647 @default.
- W2758406582 hasRelatedWork W3196344689 @default.
- W2758406582 hasRelatedWork W884129393 @default.
- W2758406582 isParatext "false" @default.
- W2758406582 isRetracted "false" @default.
- W2758406582 magId "2758406582" @default.
- W2758406582 workType "dissertation" @default.