Matches in SemOpenAlex for { <https://semopenalex.org/work/W2758415503> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2758415503 abstract "In order to avoid the frequent severe crashes, it is crucial to find out the main influential factors of these crashes, according to previous crash data. The paper analyzed the importance of various factors based on the human-vehicle-road system, using two methods of multivariate statistical analysis (cluster analysis and factor analysis). The data of 166 severe traffic crashes, each causing 10 deaths and above (hereinafter referred to as severe traffic crashes), in China from 2008 to 2014 was collected. Descriptive statistical analysis of the collected data was performed, from which we extracted 23 main factors, involving human, vehicle, and road. Cluster analysis was used to classify the 23 factors. The similarities between different variables were calculated by Ward's method. With hierarchical clustering of variables, this paper formed a detailed classification system and drew the tree diagram according to the clustering process. Next, taking relevant experience into account, the importance classification results of the factors were obtained. On the basis of cluster analysis, this paper used factor analysis method to extract the common factors from the variables. We calculated the factor loading matrix by principal component analysis, rotated the matrix by maximum deviation method, and then calculated the factor scores by regression method. Finally, this paper figured out the weight of every influential factor through the variance contribution rate of each common factor and the factor score matrix, from which the 23 factors were ranked. The comprehensive analysis shows that, among all affecting factors, the main factors and their weights as follows: speeding (8.0%), ramp (6.3%), weather (6.1%), road surface (5.9%), driving experience (5.6%), road alignment (5.4%), etc. Based on this result, the following suggestions can be put forward to improve the traffic safety situation: To curb speeding and other illegal driving behaviors; To improve protection facilities at curves and ramps; To maintain the road surface condition in adverse weather; To strengthen the management and training of novice drivers; To enhance the traffic supervision during holidays. The statistical analysis methods and models used in this paper are expected to play a role in the application of big data in traffic in future." @default.
- W2758415503 created "2017-10-06" @default.
- W2758415503 creator A5005821180 @default.
- W2758415503 creator A5012857374 @default.
- W2758415503 creator A5028973638 @default.
- W2758415503 creator A5039774761 @default.
- W2758415503 creator A5062039431 @default.
- W2758415503 date "2017-08-01" @default.
- W2758415503 modified "2023-09-26" @default.
- W2758415503 title "Cluster and factor analysis on data of fatal traffic crashes in China" @default.
- W2758415503 cites W1971709130 @default.
- W2758415503 cites W1982803293 @default.
- W2758415503 cites W1991771229 @default.
- W2758415503 cites W2010340495 @default.
- W2758415503 cites W2029069332 @default.
- W2758415503 cites W2046071287 @default.
- W2758415503 cites W2050371490 @default.
- W2758415503 cites W2064589295 @default.
- W2758415503 cites W2118938645 @default.
- W2758415503 cites W2125045459 @default.
- W2758415503 cites W2128125855 @default.
- W2758415503 cites W2140908056 @default.
- W2758415503 cites W2163908274 @default.
- W2758415503 cites W2164301029 @default.
- W2758415503 cites W2195780797 @default.
- W2758415503 cites W302628336 @default.
- W2758415503 doi "https://doi.org/10.1109/ictis.2017.8047768" @default.
- W2758415503 hasPublicationYear "2017" @default.
- W2758415503 type Work @default.
- W2758415503 sameAs 2758415503 @default.
- W2758415503 citedByCount "3" @default.
- W2758415503 countsByYear W27584155032019 @default.
- W2758415503 countsByYear W27584155032020 @default.
- W2758415503 countsByYear W27584155032023 @default.
- W2758415503 crossrefType "proceedings-article" @default.
- W2758415503 hasAuthorship W2758415503A5005821180 @default.
- W2758415503 hasAuthorship W2758415503A5012857374 @default.
- W2758415503 hasAuthorship W2758415503A5028973638 @default.
- W2758415503 hasAuthorship W2758415503A5039774761 @default.
- W2758415503 hasAuthorship W2758415503A5062039431 @default.
- W2758415503 hasConcept C105795698 @default.
- W2758415503 hasConcept C10879293 @default.
- W2758415503 hasConcept C124101348 @default.
- W2758415503 hasConcept C152877465 @default.
- W2758415503 hasConcept C161584116 @default.
- W2758415503 hasConcept C164866538 @default.
- W2758415503 hasConcept C183469790 @default.
- W2758415503 hasConcept C199360897 @default.
- W2758415503 hasConcept C27438332 @default.
- W2758415503 hasConcept C33923547 @default.
- W2758415503 hasConcept C38180746 @default.
- W2758415503 hasConcept C39896193 @default.
- W2758415503 hasConcept C41008148 @default.
- W2758415503 hasConcept C73555534 @default.
- W2758415503 hasConcept C92835128 @default.
- W2758415503 hasConceptScore W2758415503C105795698 @default.
- W2758415503 hasConceptScore W2758415503C10879293 @default.
- W2758415503 hasConceptScore W2758415503C124101348 @default.
- W2758415503 hasConceptScore W2758415503C152877465 @default.
- W2758415503 hasConceptScore W2758415503C161584116 @default.
- W2758415503 hasConceptScore W2758415503C164866538 @default.
- W2758415503 hasConceptScore W2758415503C183469790 @default.
- W2758415503 hasConceptScore W2758415503C199360897 @default.
- W2758415503 hasConceptScore W2758415503C27438332 @default.
- W2758415503 hasConceptScore W2758415503C33923547 @default.
- W2758415503 hasConceptScore W2758415503C38180746 @default.
- W2758415503 hasConceptScore W2758415503C39896193 @default.
- W2758415503 hasConceptScore W2758415503C41008148 @default.
- W2758415503 hasConceptScore W2758415503C73555534 @default.
- W2758415503 hasConceptScore W2758415503C92835128 @default.
- W2758415503 hasLocation W27584155031 @default.
- W2758415503 hasOpenAccess W2758415503 @default.
- W2758415503 hasPrimaryLocation W27584155031 @default.
- W2758415503 hasRelatedWork W2018465011 @default.
- W2758415503 hasRelatedWork W2026202199 @default.
- W2758415503 hasRelatedWork W2056407445 @default.
- W2758415503 hasRelatedWork W2117787183 @default.
- W2758415503 hasRelatedWork W2289436160 @default.
- W2758415503 hasRelatedWork W2740180083 @default.
- W2758415503 hasRelatedWork W3158082840 @default.
- W2758415503 hasRelatedWork W3163781703 @default.
- W2758415503 hasRelatedWork W4306174990 @default.
- W2758415503 hasRelatedWork W5539457 @default.
- W2758415503 isParatext "false" @default.
- W2758415503 isRetracted "false" @default.
- W2758415503 magId "2758415503" @default.
- W2758415503 workType "article" @default.