Matches in SemOpenAlex for { <https://semopenalex.org/work/W2758461560> ?p ?o ?g. }
- W2758461560 abstract "In this paper, we propose a novel multi-frame super-resolution (SR) method, which is developed by considering image enhancement and denoising into the SR processing. For image enhancement, a gradient vector flow hybrid field (GVFHF) algorithm, which is robust to noise is first designed to capture the image edges more accurately. Then, through replacing the gradient of anisotropic diffusion shock filter (ADSF) by GVFHF, a GVFHF-based ADSF (GVFHF-ADSF) model is proposed, which can effectively achieve image denoising and enhancement. In addition, a difference curvature-based spatial weight factor is defined in the GVFHF-ADSF model to obtain an adaptive weight between denoising and enhancement in the flat and edge regions. Finally, a GVFHF-ADSF-based multi-frame SR method is presented by employing the GVFHF-ADSF model as a regularization term and the steepest descent algorithm is adopted to solve the inverse SR problem. Experimental results and comparisons with existing methods demonstrate that the proposed GVFHF-ADSF-based SR algorithm can effectively suppress both Gaussian and salt-and-pepper noise, meanwhile enhance edges of the reconstructed image." @default.
- W2758461560 created "2017-10-06" @default.
- W2758461560 creator A5004996795 @default.
- W2758461560 creator A5044084977 @default.
- W2758461560 creator A5063013411 @default.
- W2758461560 creator A5076023006 @default.
- W2758461560 creator A5086072476 @default.
- W2758461560 date "2017-01-01" @default.
- W2758461560 modified "2023-10-16" @default.
- W2758461560 title "Multi-Frame Super-Resolution Reconstruction Based on Gradient Vector Flow Hybrid Field" @default.
- W2758461560 cites W1481053462 @default.
- W2758461560 cites W1590245106 @default.
- W2758461560 cites W1919542679 @default.
- W2758461560 cites W1972705785 @default.
- W2758461560 cites W2015718162 @default.
- W2758461560 cites W2016482162 @default.
- W2758461560 cites W2047625347 @default.
- W2758461560 cites W2049237558 @default.
- W2758461560 cites W2057220024 @default.
- W2758461560 cites W2057817757 @default.
- W2758461560 cites W2074406023 @default.
- W2758461560 cites W2103035876 @default.
- W2758461560 cites W2104618834 @default.
- W2758461560 cites W2111454493 @default.
- W2758461560 cites W2121058967 @default.
- W2758461560 cites W2125325064 @default.
- W2758461560 cites W2133665775 @default.
- W2758461560 cites W2150081556 @default.
- W2758461560 cites W2150134853 @default.
- W2758461560 cites W2150243299 @default.
- W2758461560 cites W2156825886 @default.
- W2758461560 cites W2163370434 @default.
- W2758461560 cites W2163935418 @default.
- W2758461560 cites W2165015795 @default.
- W2758461560 cites W2165939075 @default.
- W2758461560 cites W2171192836 @default.
- W2758461560 cites W2172128189 @default.
- W2758461560 cites W2181684145 @default.
- W2758461560 cites W2320725294 @default.
- W2758461560 cites W2359099468 @default.
- W2758461560 cites W2430516715 @default.
- W2758461560 cites W2469023256 @default.
- W2758461560 cites W2503339013 @default.
- W2758461560 cites W2509348655 @default.
- W2758461560 cites W2523058113 @default.
- W2758461560 cites W2536599074 @default.
- W2758461560 cites W2536635919 @default.
- W2758461560 cites W2568836606 @default.
- W2758461560 cites W2587331199 @default.
- W2758461560 cites W2607041014 @default.
- W2758461560 cites W2987004640 @default.
- W2758461560 cites W3043538212 @default.
- W2758461560 doi "https://doi.org/10.1109/access.2017.2757239" @default.
- W2758461560 hasPublicationYear "2017" @default.
- W2758461560 type Work @default.
- W2758461560 sameAs 2758461560 @default.
- W2758461560 citedByCount "14" @default.
- W2758461560 countsByYear W27584615602018 @default.
- W2758461560 countsByYear W27584615602019 @default.
- W2758461560 countsByYear W27584615602020 @default.
- W2758461560 countsByYear W27584615602021 @default.
- W2758461560 crossrefType "journal-article" @default.
- W2758461560 hasAuthorship W2758461560A5004996795 @default.
- W2758461560 hasAuthorship W2758461560A5044084977 @default.
- W2758461560 hasAuthorship W2758461560A5063013411 @default.
- W2758461560 hasAuthorship W2758461560A5076023006 @default.
- W2758461560 hasAuthorship W2758461560A5086072476 @default.
- W2758461560 hasBestOaLocation W27584615601 @default.
- W2758461560 hasConcept C101453961 @default.
- W2758461560 hasConcept C113315163 @default.
- W2758461560 hasConcept C11413529 @default.
- W2758461560 hasConcept C115961682 @default.
- W2758461560 hasConcept C124504099 @default.
- W2758461560 hasConcept C153258448 @default.
- W2758461560 hasConcept C154945302 @default.
- W2758461560 hasConcept C156140930 @default.
- W2758461560 hasConcept C163294075 @default.
- W2758461560 hasConcept C182037307 @default.
- W2758461560 hasConcept C193536780 @default.
- W2758461560 hasConcept C203504353 @default.
- W2758461560 hasConcept C207282899 @default.
- W2758461560 hasConcept C20749125 @default.
- W2758461560 hasConcept C2524010 @default.
- W2758461560 hasConcept C2776135515 @default.
- W2758461560 hasConcept C2983327147 @default.
- W2758461560 hasConcept C33923547 @default.
- W2758461560 hasConcept C41008148 @default.
- W2758461560 hasConcept C50644808 @default.
- W2758461560 hasConcept C91188154 @default.
- W2758461560 hasConcept C9417928 @default.
- W2758461560 hasConceptScore W2758461560C101453961 @default.
- W2758461560 hasConceptScore W2758461560C113315163 @default.
- W2758461560 hasConceptScore W2758461560C11413529 @default.
- W2758461560 hasConceptScore W2758461560C115961682 @default.
- W2758461560 hasConceptScore W2758461560C124504099 @default.
- W2758461560 hasConceptScore W2758461560C153258448 @default.
- W2758461560 hasConceptScore W2758461560C154945302 @default.
- W2758461560 hasConceptScore W2758461560C156140930 @default.
- W2758461560 hasConceptScore W2758461560C163294075 @default.
- W2758461560 hasConceptScore W2758461560C182037307 @default.