Matches in SemOpenAlex for { <https://semopenalex.org/work/W2758900040> ?p ?o ?g. }
- W2758900040 endingPage "4486" @default.
- W2758900040 startingPage "4479" @default.
- W2758900040 abstract "Most image classification methods try to learn classifiers for each class using training images alone. Due to the interclass and intraclass variations, it would be more effective to take the testing images into consideration for classifier learning. In this brief, we propose a novel image-specific classification method by combing the local and global discriminations of training images. We adaptively train classifier for each testing image instead of generating classifiers for each class with training images alone. For each testing image, we first select its ${k}$ nearest neighbors in the training set with the corresponding labels for local classifier training. This helps to model the distinctive characters of each testing image. Besides, we also use all the training images for global discrimination modeling. The local and global discriminations are combined for final classification. In this way, we could not only model the specific character of each testing image but also avoid the local optimum by jointly considering all the training images. To evaluate the usefulness of the proposed image-specific classification with local and global discrimination (ISC-LG) method, we conduct image classification experiments on several public image data sets. The superior performances over other baseline methods prove the effectiveness of the proposed ISC-LG method." @default.
- W2758900040 created "2017-10-06" @default.
- W2758900040 creator A5000727470 @default.
- W2758900040 creator A5008934460 @default.
- W2758900040 creator A5047455588 @default.
- W2758900040 creator A5061670980 @default.
- W2758900040 date "2018-09-01" @default.
- W2758900040 modified "2023-09-23" @default.
- W2758900040 title "Image-Specific Classification With Local and Global Discriminations" @default.
- W2758900040 cites W1911659059 @default.
- W2758900040 cites W1925596459 @default.
- W2758900040 cites W1948072141 @default.
- W2758900040 cites W1966385142 @default.
- W2758900040 cites W1976921161 @default.
- W2758900040 cites W1981613567 @default.
- W2758900040 cites W1988898685 @default.
- W2758900040 cites W1989684337 @default.
- W2758900040 cites W2000355138 @default.
- W2758900040 cites W2000714550 @default.
- W2758900040 cites W2003115311 @default.
- W2758900040 cites W2010632104 @default.
- W2758900040 cites W2014795190 @default.
- W2758900040 cites W2015722466 @default.
- W2758900040 cites W2015861736 @default.
- W2758900040 cites W2027922120 @default.
- W2758900040 cites W2028930140 @default.
- W2758900040 cites W2034266400 @default.
- W2758900040 cites W2048335335 @default.
- W2758900040 cites W2052575990 @default.
- W2758900040 cites W2079238516 @default.
- W2758900040 cites W2097117768 @default.
- W2758900040 cites W2101341821 @default.
- W2758900040 cites W2104068492 @default.
- W2758900040 cites W2106837342 @default.
- W2758900040 cites W2109025943 @default.
- W2758900040 cites W2110015572 @default.
- W2758900040 cites W2117539524 @default.
- W2758900040 cites W2121027212 @default.
- W2758900040 cites W2122808326 @default.
- W2758900040 cites W2129793592 @default.
- W2758900040 cites W2131846894 @default.
- W2758900040 cites W2140619591 @default.
- W2758900040 cites W2141350700 @default.
- W2758900040 cites W2150856297 @default.
- W2758900040 cites W2155490028 @default.
- W2758900040 cites W2155893237 @default.
- W2758900040 cites W2160692033 @default.
- W2758900040 cites W2162762921 @default.
- W2758900040 cites W2162915993 @default.
- W2758900040 cites W2165828254 @default.
- W2758900040 cites W2166742463 @default.
- W2758900040 cites W2229419338 @default.
- W2758900040 cites W2239589426 @default.
- W2758900040 cites W2280226538 @default.
- W2758900040 cites W2328317224 @default.
- W2758900040 cites W2343542818 @default.
- W2758900040 cites W2344925450 @default.
- W2758900040 cites W2345155423 @default.
- W2758900040 cites W2349926826 @default.
- W2758900040 cites W2386210108 @default.
- W2758900040 cites W2469023256 @default.
- W2758900040 cites W2522198061 @default.
- W2758900040 cites W2533598788 @default.
- W2758900040 cites W3122665668 @default.
- W2758900040 doi "https://doi.org/10.1109/tnnls.2017.2748952" @default.
- W2758900040 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28961130" @default.
- W2758900040 hasPublicationYear "2018" @default.
- W2758900040 type Work @default.
- W2758900040 sameAs 2758900040 @default.
- W2758900040 citedByCount "17" @default.
- W2758900040 countsByYear W27589000402018 @default.
- W2758900040 countsByYear W27589000402019 @default.
- W2758900040 countsByYear W27589000402020 @default.
- W2758900040 countsByYear W27589000402021 @default.
- W2758900040 countsByYear W27589000402022 @default.
- W2758900040 crossrefType "journal-article" @default.
- W2758900040 hasAuthorship W2758900040A5000727470 @default.
- W2758900040 hasAuthorship W2758900040A5008934460 @default.
- W2758900040 hasAuthorship W2758900040A5047455588 @default.
- W2758900040 hasAuthorship W2758900040A5061670980 @default.
- W2758900040 hasConcept C115961682 @default.
- W2758900040 hasConcept C119857082 @default.
- W2758900040 hasConcept C153180895 @default.
- W2758900040 hasConcept C154945302 @default.
- W2758900040 hasConcept C31972630 @default.
- W2758900040 hasConcept C41008148 @default.
- W2758900040 hasConcept C51632099 @default.
- W2758900040 hasConcept C75294576 @default.
- W2758900040 hasConcept C95623464 @default.
- W2758900040 hasConceptScore W2758900040C115961682 @default.
- W2758900040 hasConceptScore W2758900040C119857082 @default.
- W2758900040 hasConceptScore W2758900040C153180895 @default.
- W2758900040 hasConceptScore W2758900040C154945302 @default.
- W2758900040 hasConceptScore W2758900040C31972630 @default.
- W2758900040 hasConceptScore W2758900040C41008148 @default.
- W2758900040 hasConceptScore W2758900040C51632099 @default.
- W2758900040 hasConceptScore W2758900040C75294576 @default.
- W2758900040 hasConceptScore W2758900040C95623464 @default.