Matches in SemOpenAlex for { <https://semopenalex.org/work/W2759094788> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2759094788 endingPage "E668" @default.
- W2759094788 startingPage "E668" @default.
- W2759094788 abstract "The magnitude of OAR dose sparing feasible with radiation therapy depends upon the patient-specific arrangement of the target volumes in relation to the OARs. When comparing proton beam therapy (PBT) and photon therapy, the evaluation of PBT benefits is currently achieved via resource-intensive treatment planning, which requires specialized software and clinical expertise typically only available at PBT centers. The purpose of this study is to train and validate knowledge-based plan prediction (KPP) models to estimate these benefits for lung cancer patients, requiring fewer resources and no PBT expertise. Our study used a cohort of locally advanced NSCLC patients, enrolled in a trial that randomized treatment between PBT (36 pts) and IMRT (68 pts). KPP models learn geometric patterns from a database of pre-existing treatment plans, and can then predict the feasible OAR DVHs of a new patient. By training independent KPP models for both PBT and IMRT, the feasible benefits of PBT can be predicted for the new patient. Our KPP methodology split each OAR into subvolumes that characterize the dose falloff and coplanar beams. Models were validated by 5-fold cross-validation, by comparing the predicted OAR DVHs to those of the actual treatment plan. DVHs were predicted for the lung (combined lungs excluding GTV), heart and esophagus. For each predicted and planned DVH, the equivalent uniform dose (EUD) and normal tissue complication probability (NTCP) were computed. The table shows the root-mean-square error of the EUD and NTCP predictions, for both the PBT and IMRT models. It also shows the estimated uncertainty in the predicted benefit. Model accuracy depends upon the OAR type and treatment modality, but no significant signs of bias were observed. Pearson’s correlation coefficient was 84% – 98% for PBT and 81% – 96% for IMRT, demonstrating that the KPP models successfully captured the interpatient variation. We developed KPP models for lung cancer patients treated with PBT and an alternative treatment modality (IMRT). By comparing the two predicted plans for a new patient, the patient-specific benefits of PBT can quickly be estimated with high accuracy. This methodology could enable better-informed referral decisions, improving the cost-effectiveness of this expensive therapy and elevating PBT in the era of precision medicine. It could also estimate the expected benefits at an earlier stage in the clinical workflow, or provide a high-throughput patient pre-selection for model-based trials aiming to measure the higher efficacy of PBT.Abstract 3592Prediction Error in EUD [Gy]Prediction Error in NTCP [%]PBTIMRTBenefitsPBTIMRTBenefitsLung2.02.23.02.94.45.3Heart1.93.54.02.14.24.7Esophagus4.35.16.76.87.810.3 Open table in a new tab" @default.
- W2759094788 created "2017-10-06" @default.
- W2759094788 creator A5037938903 @default.
- W2759094788 creator A5040409722 @default.
- W2759094788 creator A5041943880 @default.
- W2759094788 creator A5079007975 @default.
- W2759094788 creator A5086483620 @default.
- W2759094788 date "2017-10-01" @default.
- W2759094788 modified "2023-09-28" @default.
- W2759094788 title "Predicting the benefits of proton therapy in lung cancer patients from patient-specific anatomic and pathologic geometry" @default.
- W2759094788 doi "https://doi.org/10.1016/j.ijrobp.2017.06.2211" @default.
- W2759094788 hasPublicationYear "2017" @default.
- W2759094788 type Work @default.
- W2759094788 sameAs 2759094788 @default.
- W2759094788 citedByCount "0" @default.
- W2759094788 crossrefType "journal-article" @default.
- W2759094788 hasAuthorship W2759094788A5037938903 @default.
- W2759094788 hasAuthorship W2759094788A5040409722 @default.
- W2759094788 hasAuthorship W2759094788A5041943880 @default.
- W2759094788 hasAuthorship W2759094788A5079007975 @default.
- W2759094788 hasAuthorship W2759094788A5086483620 @default.
- W2759094788 hasBestOaLocation W27590947881 @default.
- W2759094788 hasConcept C126838900 @default.
- W2759094788 hasConcept C143998085 @default.
- W2759094788 hasConcept C19527891 @default.
- W2759094788 hasConcept C201645570 @default.
- W2759094788 hasConcept C2776256026 @default.
- W2759094788 hasConcept C2779244869 @default.
- W2759094788 hasConcept C2989005 @default.
- W2759094788 hasConcept C509974204 @default.
- W2759094788 hasConcept C71924100 @default.
- W2759094788 hasConceptScore W2759094788C126838900 @default.
- W2759094788 hasConceptScore W2759094788C143998085 @default.
- W2759094788 hasConceptScore W2759094788C19527891 @default.
- W2759094788 hasConceptScore W2759094788C201645570 @default.
- W2759094788 hasConceptScore W2759094788C2776256026 @default.
- W2759094788 hasConceptScore W2759094788C2779244869 @default.
- W2759094788 hasConceptScore W2759094788C2989005 @default.
- W2759094788 hasConceptScore W2759094788C509974204 @default.
- W2759094788 hasConceptScore W2759094788C71924100 @default.
- W2759094788 hasIssue "2" @default.
- W2759094788 hasLocation W27590947881 @default.
- W2759094788 hasOpenAccess W2759094788 @default.
- W2759094788 hasPrimaryLocation W27590947881 @default.
- W2759094788 hasRelatedWork W1582313464 @default.
- W2759094788 hasRelatedWork W2042400800 @default.
- W2759094788 hasRelatedWork W2116671221 @default.
- W2759094788 hasRelatedWork W2477137756 @default.
- W2759094788 hasRelatedWork W30869299 @default.
- W2759094788 hasRelatedWork W3113081570 @default.
- W2759094788 hasRelatedWork W3139744780 @default.
- W2759094788 hasRelatedWork W3187823854 @default.
- W2759094788 hasRelatedWork W39754322 @default.
- W2759094788 hasRelatedWork W935391112 @default.
- W2759094788 hasVolume "99" @default.
- W2759094788 isParatext "false" @default.
- W2759094788 isRetracted "false" @default.
- W2759094788 magId "2759094788" @default.
- W2759094788 workType "article" @default.