Matches in SemOpenAlex for { <https://semopenalex.org/work/W2759197712> ?p ?o ?g. }
- W2759197712 endingPage "2523" @default.
- W2759197712 startingPage "2510" @default.
- W2759197712 abstract "The valuable structure features in full-dose computed tomography (FdCT) scans can be exploited as prior knowledge for low-dose CT (LdCT) imaging. However, lacking the capability to represent local characteristics of interested structures of the LdCT image adaptively may result in poor preservation of details/textures in LdCT image. This paper aims to explore a novel prior knowledge retrieval and representation paradigm, called adaptive prior features assisted restoration algorithm, for the purpose of better restoration of the low-dose lung CT images by capturing local features from FdCT scans adaptively. The innovation lies in the construction of an offline training database and the online patch-search scheme integrated with the principal components analysis (PCA). Specifically, the offline training database is composed of 3-D patch samples extracted from existing full-dose lung scans. For online patch-search, 3-D patches with structure similar to the noisy target patch are first selected from the database as the training samples. Then, PCA is applied on the training samples to retrieve their local prior principal features adaptively. By employing the principal features to decompose the noisy target patch and using an adaptive coefficient shrinkage technique for inverse transformation, the noise of the target patch can be efficiently removed and the detailed texture can be well preserved. The effectiveness of the proposed algorithm was validated by CT scans of patients with lung cancer. The results show that it can achieve a noticeable gain over some state-of-the-art methods in terms of noise suppression and details/textures preservation." @default.
- W2759197712 created "2017-10-06" @default.
- W2759197712 creator A5007087028 @default.
- W2759197712 creator A5020628633 @default.
- W2759197712 creator A5034743810 @default.
- W2759197712 creator A5075177973 @default.
- W2759197712 creator A5091410552 @default.
- W2759197712 date "2017-12-01" @default.
- W2759197712 modified "2023-10-14" @default.
- W2759197712 title "Low-Dose Lung CT Image Restoration Using Adaptive Prior Features From Full-Dose Training Database" @default.
- W2759197712 cites W1522271611 @default.
- W2759197712 cites W1966364402 @default.
- W2759197712 cites W1975821819 @default.
- W2759197712 cites W2005108682 @default.
- W2759197712 cites W2013776585 @default.
- W2759197712 cites W2022060643 @default.
- W2759197712 cites W2037511378 @default.
- W2759197712 cites W2038138551 @default.
- W2759197712 cites W2040189727 @default.
- W2759197712 cites W2042743306 @default.
- W2759197712 cites W2044465660 @default.
- W2759197712 cites W2044975274 @default.
- W2759197712 cites W2049856752 @default.
- W2759197712 cites W2054218460 @default.
- W2759197712 cites W2070369771 @default.
- W2759197712 cites W2080477227 @default.
- W2759197712 cites W2085692415 @default.
- W2759197712 cites W2094366314 @default.
- W2759197712 cites W2095631289 @default.
- W2759197712 cites W2098092211 @default.
- W2759197712 cites W2102104181 @default.
- W2759197712 cites W2103922497 @default.
- W2759197712 cites W2131585832 @default.
- W2759197712 cites W2133665775 @default.
- W2759197712 cites W2142884793 @default.
- W2759197712 cites W2142919747 @default.
- W2759197712 cites W2144783994 @default.
- W2759197712 cites W2149256982 @default.
- W2759197712 cites W2149300224 @default.
- W2759197712 cites W2153663612 @default.
- W2759197712 cites W2164566125 @default.
- W2759197712 cites W2171697262 @default.
- W2759197712 cites W2288483235 @default.
- W2759197712 cites W4230764897 @default.
- W2759197712 cites W4296142362 @default.
- W2759197712 doi "https://doi.org/10.1109/tmi.2017.2757035" @default.
- W2759197712 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28961108" @default.
- W2759197712 hasPublicationYear "2017" @default.
- W2759197712 type Work @default.
- W2759197712 sameAs 2759197712 @default.
- W2759197712 citedByCount "22" @default.
- W2759197712 countsByYear W27591977122018 @default.
- W2759197712 countsByYear W27591977122019 @default.
- W2759197712 countsByYear W27591977122020 @default.
- W2759197712 countsByYear W27591977122021 @default.
- W2759197712 countsByYear W27591977122022 @default.
- W2759197712 countsByYear W27591977122023 @default.
- W2759197712 crossrefType "journal-article" @default.
- W2759197712 hasAuthorship W2759197712A5007087028 @default.
- W2759197712 hasAuthorship W2759197712A5020628633 @default.
- W2759197712 hasAuthorship W2759197712A5034743810 @default.
- W2759197712 hasAuthorship W2759197712A5075177973 @default.
- W2759197712 hasAuthorship W2759197712A5091410552 @default.
- W2759197712 hasConcept C115961682 @default.
- W2759197712 hasConcept C124066611 @default.
- W2759197712 hasConcept C141379421 @default.
- W2759197712 hasConcept C153180895 @default.
- W2759197712 hasConcept C154945302 @default.
- W2759197712 hasConcept C27438332 @default.
- W2759197712 hasConcept C31972630 @default.
- W2759197712 hasConcept C41008148 @default.
- W2759197712 hasConcept C99498987 @default.
- W2759197712 hasConceptScore W2759197712C115961682 @default.
- W2759197712 hasConceptScore W2759197712C124066611 @default.
- W2759197712 hasConceptScore W2759197712C141379421 @default.
- W2759197712 hasConceptScore W2759197712C153180895 @default.
- W2759197712 hasConceptScore W2759197712C154945302 @default.
- W2759197712 hasConceptScore W2759197712C27438332 @default.
- W2759197712 hasConceptScore W2759197712C31972630 @default.
- W2759197712 hasConceptScore W2759197712C41008148 @default.
- W2759197712 hasConceptScore W2759197712C99498987 @default.
- W2759197712 hasFunder F4320321001 @default.
- W2759197712 hasFunder F4320321543 @default.
- W2759197712 hasFunder F4320337504 @default.
- W2759197712 hasFunder F4320338074 @default.
- W2759197712 hasIssue "12" @default.
- W2759197712 hasLocation W27591977121 @default.
- W2759197712 hasLocation W27591977122 @default.
- W2759197712 hasOpenAccess W2759197712 @default.
- W2759197712 hasPrimaryLocation W27591977121 @default.
- W2759197712 hasRelatedWork W2085553065 @default.
- W2759197712 hasRelatedWork W2232685869 @default.
- W2759197712 hasRelatedWork W2380927352 @default.
- W2759197712 hasRelatedWork W2462272989 @default.
- W2759197712 hasRelatedWork W2990531703 @default.
- W2759197712 hasRelatedWork W3048981730 @default.
- W2759197712 hasRelatedWork W3178621026 @default.
- W2759197712 hasRelatedWork W4211209597 @default.