Matches in SemOpenAlex for { <https://semopenalex.org/work/W2759692021> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2759692021 abstract "This article attempts to analyse and predict vertical displacements of measurement-and- control network points located on civil structures founded on expansive soils, using artificial neural networks. Geodetic monitoring of civil structures consists in regular measurements of control point networks and interpretation of results. The obtained values of displacement provide sets of significant data which enable determination of the influence of changes in groundwater conditions of the subsoil on the deformation processes occurring in structures founded on it. Using such data sets, it is possible to draw conclusions regarding the dynamics of the occurrence of deformation and to develop a geometric model of displacements. In recent years, methods of prediction based on artificial intelligence have been increasingly prominent. Neural networks and evolutionary algorithms, which can supplement each other, make advanced tools applied in the process of prediction of deformations. In order to forecast displacements of control points, demonstrating changes in a civil structure, multi-layer artificial neural networks are employed in this article, taught using the method of error backpropagation and gradient optimization methods. The analysed results in the form of height differences were obtained through a series of measurements on a civil structure, taken by means of precise levelling at monthly intervals." @default.
- W2759692021 created "2017-10-06" @default.
- W2759692021 creator A5004767123 @default.
- W2759692021 creator A5015802273 @default.
- W2759692021 date "2017-08-10" @default.
- W2759692021 modified "2023-10-03" @default.
- W2759692021 title "Prediction of Vertical Displacements in Civil Structures Using Artificial Neural Networks" @default.
- W2759692021 cites W2550559247 @default.
- W2759692021 doi "https://doi.org/10.3846/enviro.2017.220" @default.
- W2759692021 hasPublicationYear "2017" @default.
- W2759692021 type Work @default.
- W2759692021 sameAs 2759692021 @default.
- W2759692021 citedByCount "1" @default.
- W2759692021 countsByYear W27596920212019 @default.
- W2759692021 crossrefType "proceedings-article" @default.
- W2759692021 hasAuthorship W2759692021A5004767123 @default.
- W2759692021 hasAuthorship W2759692021A5015802273 @default.
- W2759692021 hasConcept C107551265 @default.
- W2759692021 hasConcept C111368507 @default.
- W2759692021 hasConcept C11413529 @default.
- W2759692021 hasConcept C119857082 @default.
- W2759692021 hasConcept C127313418 @default.
- W2759692021 hasConcept C13280743 @default.
- W2759692021 hasConcept C154945302 @default.
- W2759692021 hasConcept C155032097 @default.
- W2759692021 hasConcept C155512373 @default.
- W2759692021 hasConcept C15744967 @default.
- W2759692021 hasConcept C204366326 @default.
- W2759692021 hasConcept C41008148 @default.
- W2759692021 hasConcept C50644808 @default.
- W2759692021 hasConcept C542102704 @default.
- W2759692021 hasConcept C58754882 @default.
- W2759692021 hasConceptScore W2759692021C107551265 @default.
- W2759692021 hasConceptScore W2759692021C111368507 @default.
- W2759692021 hasConceptScore W2759692021C11413529 @default.
- W2759692021 hasConceptScore W2759692021C119857082 @default.
- W2759692021 hasConceptScore W2759692021C127313418 @default.
- W2759692021 hasConceptScore W2759692021C13280743 @default.
- W2759692021 hasConceptScore W2759692021C154945302 @default.
- W2759692021 hasConceptScore W2759692021C155032097 @default.
- W2759692021 hasConceptScore W2759692021C155512373 @default.
- W2759692021 hasConceptScore W2759692021C15744967 @default.
- W2759692021 hasConceptScore W2759692021C204366326 @default.
- W2759692021 hasConceptScore W2759692021C41008148 @default.
- W2759692021 hasConceptScore W2759692021C50644808 @default.
- W2759692021 hasConceptScore W2759692021C542102704 @default.
- W2759692021 hasConceptScore W2759692021C58754882 @default.
- W2759692021 hasLocation W27596920211 @default.
- W2759692021 hasOpenAccess W2759692021 @default.
- W2759692021 hasPrimaryLocation W27596920211 @default.
- W2759692021 hasRelatedWork W2015441607 @default.
- W2759692021 hasRelatedWork W2159776209 @default.
- W2759692021 hasRelatedWork W2183012693 @default.
- W2759692021 hasRelatedWork W2201008065 @default.
- W2759692021 hasRelatedWork W2222959897 @default.
- W2759692021 hasRelatedWork W2360788257 @default.
- W2759692021 hasRelatedWork W2361204034 @default.
- W2759692021 hasRelatedWork W2372038396 @default.
- W2759692021 hasRelatedWork W2373175328 @default.
- W2759692021 hasRelatedWork W2491209634 @default.
- W2759692021 hasRelatedWork W2587283388 @default.
- W2759692021 hasRelatedWork W2777833789 @default.
- W2759692021 hasRelatedWork W2891839838 @default.
- W2759692021 hasRelatedWork W2938543219 @default.
- W2759692021 hasRelatedWork W2999733953 @default.
- W2759692021 hasRelatedWork W3022065024 @default.
- W2759692021 hasRelatedWork W3089152969 @default.
- W2759692021 hasRelatedWork W3096691623 @default.
- W2759692021 hasRelatedWork W3131156126 @default.
- W2759692021 hasRelatedWork W2396961362 @default.
- W2759692021 isParatext "false" @default.
- W2759692021 isRetracted "false" @default.
- W2759692021 magId "2759692021" @default.
- W2759692021 workType "article" @default.