Matches in SemOpenAlex for { <https://semopenalex.org/work/W2760129797> ?p ?o ?g. }
- W2760129797 abstract "Many systems are partially stochastic in nature. We have derived data driven approaches for extracting stochastic state machines (Markov models) directly from observed data. This chapter provides an overview of our approach with numerous practical applications. We have used this approach for inferring shipping patterns, exploiting computer system side-channel information, and detecting botnet activities. For contrast, we include a related data-driven statistical inferencing approach that detects and localizes radiation sources." @default.
- W2760129797 created "2017-10-06" @default.
- W2760129797 creator A5010613889 @default.
- W2760129797 creator A5032972088 @default.
- W2760129797 creator A5047604411 @default.
- W2760129797 creator A5052401358 @default.
- W2760129797 creator A5063113874 @default.
- W2760129797 creator A5087486107 @default.
- W2760129797 date "2018-01-01" @default.
- W2760129797 modified "2023-09-27" @default.
- W2760129797 title "Using Markov Models and Statistics to Learn, Extract, Fuse, and Detect Patterns in Raw Data" @default.
- W2760129797 cites W1540388444 @default.
- W2760129797 cites W1578388538 @default.
- W2760129797 cites W1989769652 @default.
- W2760129797 cites W1991209472 @default.
- W2760129797 cites W1997453923 @default.
- W2760129797 cites W2001000502 @default.
- W2760129797 cites W2008755343 @default.
- W2760129797 cites W2062656822 @default.
- W2760129797 cites W2072266282 @default.
- W2760129797 cites W2085741027 @default.
- W2760129797 cites W2091644335 @default.
- W2760129797 cites W2105862475 @default.
- W2760129797 cites W2113341218 @default.
- W2760129797 cites W2113784723 @default.
- W2760129797 cites W2114404361 @default.
- W2760129797 cites W2125838338 @default.
- W2760129797 cites W2126958887 @default.
- W2760129797 cites W2132450919 @default.
- W2760129797 cites W2136495567 @default.
- W2760129797 cites W2137775294 @default.
- W2760129797 cites W2141975880 @default.
- W2760129797 cites W2154798766 @default.
- W2760129797 cites W2166134520 @default.
- W2760129797 cites W2214897964 @default.
- W2760129797 cites W2288411737 @default.
- W2760129797 cites W24301470 @default.
- W2760129797 cites W2588126298 @default.
- W2760129797 cites W2602867466 @default.
- W2760129797 cites W2742457758 @default.
- W2760129797 cites W2757303199 @default.
- W2760129797 cites W2901213269 @default.
- W2760129797 cites W3147254695 @default.
- W2760129797 doi "https://doi.org/10.1007/978-3-319-75683-7_20" @default.
- W2760129797 hasPublicationYear "2018" @default.
- W2760129797 type Work @default.
- W2760129797 sameAs 2760129797 @default.
- W2760129797 citedByCount "0" @default.
- W2760129797 crossrefType "book-chapter" @default.
- W2760129797 hasAuthorship W2760129797A5010613889 @default.
- W2760129797 hasAuthorship W2760129797A5032972088 @default.
- W2760129797 hasAuthorship W2760129797A5047604411 @default.
- W2760129797 hasAuthorship W2760129797A5052401358 @default.
- W2760129797 hasAuthorship W2760129797A5063113874 @default.
- W2760129797 hasAuthorship W2760129797A5087486107 @default.
- W2760129797 hasBestOaLocation W27601297972 @default.
- W2760129797 hasConcept C105795698 @default.
- W2760129797 hasConcept C110875604 @default.
- W2760129797 hasConcept C119599485 @default.
- W2760129797 hasConcept C119857082 @default.
- W2760129797 hasConcept C124101348 @default.
- W2760129797 hasConcept C127413603 @default.
- W2760129797 hasConcept C132964779 @default.
- W2760129797 hasConcept C136764020 @default.
- W2760129797 hasConcept C141353440 @default.
- W2760129797 hasConcept C154945302 @default.
- W2760129797 hasConcept C159886148 @default.
- W2760129797 hasConcept C163836022 @default.
- W2760129797 hasConcept C199360897 @default.
- W2760129797 hasConcept C22735295 @default.
- W2760129797 hasConcept C23224414 @default.
- W2760129797 hasConcept C33923547 @default.
- W2760129797 hasConcept C41008148 @default.
- W2760129797 hasConcept C98763669 @default.
- W2760129797 hasConceptScore W2760129797C105795698 @default.
- W2760129797 hasConceptScore W2760129797C110875604 @default.
- W2760129797 hasConceptScore W2760129797C119599485 @default.
- W2760129797 hasConceptScore W2760129797C119857082 @default.
- W2760129797 hasConceptScore W2760129797C124101348 @default.
- W2760129797 hasConceptScore W2760129797C127413603 @default.
- W2760129797 hasConceptScore W2760129797C132964779 @default.
- W2760129797 hasConceptScore W2760129797C136764020 @default.
- W2760129797 hasConceptScore W2760129797C141353440 @default.
- W2760129797 hasConceptScore W2760129797C154945302 @default.
- W2760129797 hasConceptScore W2760129797C159886148 @default.
- W2760129797 hasConceptScore W2760129797C163836022 @default.
- W2760129797 hasConceptScore W2760129797C199360897 @default.
- W2760129797 hasConceptScore W2760129797C22735295 @default.
- W2760129797 hasConceptScore W2760129797C23224414 @default.
- W2760129797 hasConceptScore W2760129797C33923547 @default.
- W2760129797 hasConceptScore W2760129797C41008148 @default.
- W2760129797 hasConceptScore W2760129797C98763669 @default.
- W2760129797 hasLocation W27601297971 @default.
- W2760129797 hasLocation W27601297972 @default.
- W2760129797 hasOpenAccess W2760129797 @default.
- W2760129797 hasPrimaryLocation W27601297971 @default.
- W2760129797 hasRelatedWork W1034139176 @default.
- W2760129797 hasRelatedWork W1527936925 @default.
- W2760129797 hasRelatedWork W2075763500 @default.
- W2760129797 hasRelatedWork W2097914953 @default.