Matches in SemOpenAlex for { <https://semopenalex.org/work/W2760130459> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2760130459 endingPage "1013" @default.
- W2760130459 startingPage "1013" @default.
- W2760130459 abstract "Matrix factorization based methods have widely been used in data representation. Among them, Non-negative Matrix Factorization (NMF) is a promising technique owing to its psychological and physiological interpretation of spontaneously occurring data. On one hand, although traditional Laplacian regularization can enhance the performance of NMF, it still suffers from the problem of its weak extrapolating ability. On the other hand, standard NMF disregards the discriminative information hidden in the data and cannot guarantee the sparsity of the factor matrices. In this paper, a novel algorithm called ℓ 2 , 1 norm and Hessian Regularized Non-negative Matrix Factorization with Discriminability (ℓ 2 , 1 HNMFD), is developed to overcome the aforementioned problems. In ℓ 2 , 1 HNMFD, Hessian regularization is introduced in the framework of NMF to capture the intrinsic manifold structure of the data. ℓ 2 , 1 norm constraints and approximation orthogonal constraints are added to assure the group sparsity of encoding matrix and characterize the discriminative information of the data simultaneously. To solve the objective function, an efficient optimization scheme is developed to settle it. Our experimental results on five benchmark data sets have demonstrated that ℓ 2 , 1 HNMFD can learn better data representation and provide better clustering results." @default.
- W2760130459 created "2017-10-06" @default.
- W2760130459 creator A5017775910 @default.
- W2760130459 creator A5059352241 @default.
- W2760130459 creator A5063145868 @default.
- W2760130459 date "2017-09-30" @default.
- W2760130459 modified "2023-10-17" @default.
- W2760130459 title "ℓ2,1 Norm and Hessian Regularized Non-Negative Matrix Factorization with Discriminability for Data Representation" @default.
- W2760130459 cites W1631938343 @default.
- W2760130459 cites W1902027874 @default.
- W2760130459 cites W2032944446 @default.
- W2760130459 cites W2056201402 @default.
- W2760130459 cites W2063069198 @default.
- W2760130459 cites W2103697417 @default.
- W2760130459 cites W2108119513 @default.
- W2760130459 cites W2121947440 @default.
- W2760130459 cites W2128728535 @default.
- W2760130459 cites W2129793592 @default.
- W2760130459 cites W2494395359 @default.
- W2760130459 cites W2605904273 @default.
- W2760130459 cites W2607323999 @default.
- W2760130459 doi "https://doi.org/10.3390/app7101013" @default.
- W2760130459 hasPublicationYear "2017" @default.
- W2760130459 type Work @default.
- W2760130459 sameAs 2760130459 @default.
- W2760130459 citedByCount "4" @default.
- W2760130459 countsByYear W27601304592019 @default.
- W2760130459 countsByYear W27601304592020 @default.
- W2760130459 crossrefType "journal-article" @default.
- W2760130459 hasAuthorship W2760130459A5017775910 @default.
- W2760130459 hasAuthorship W2760130459A5059352241 @default.
- W2760130459 hasAuthorship W2760130459A5063145868 @default.
- W2760130459 hasBestOaLocation W27601304591 @default.
- W2760130459 hasConcept C11413529 @default.
- W2760130459 hasConcept C121332964 @default.
- W2760130459 hasConcept C152671427 @default.
- W2760130459 hasConcept C153180895 @default.
- W2760130459 hasConcept C154945302 @default.
- W2760130459 hasConcept C158693339 @default.
- W2760130459 hasConcept C17744445 @default.
- W2760130459 hasConcept C191795146 @default.
- W2760130459 hasConcept C199539241 @default.
- W2760130459 hasConcept C203616005 @default.
- W2760130459 hasConcept C28826006 @default.
- W2760130459 hasConcept C33923547 @default.
- W2760130459 hasConcept C41008148 @default.
- W2760130459 hasConcept C42355184 @default.
- W2760130459 hasConcept C62520636 @default.
- W2760130459 hasConcept C73555534 @default.
- W2760130459 hasConcept C97931131 @default.
- W2760130459 hasConceptScore W2760130459C11413529 @default.
- W2760130459 hasConceptScore W2760130459C121332964 @default.
- W2760130459 hasConceptScore W2760130459C152671427 @default.
- W2760130459 hasConceptScore W2760130459C153180895 @default.
- W2760130459 hasConceptScore W2760130459C154945302 @default.
- W2760130459 hasConceptScore W2760130459C158693339 @default.
- W2760130459 hasConceptScore W2760130459C17744445 @default.
- W2760130459 hasConceptScore W2760130459C191795146 @default.
- W2760130459 hasConceptScore W2760130459C199539241 @default.
- W2760130459 hasConceptScore W2760130459C203616005 @default.
- W2760130459 hasConceptScore W2760130459C28826006 @default.
- W2760130459 hasConceptScore W2760130459C33923547 @default.
- W2760130459 hasConceptScore W2760130459C41008148 @default.
- W2760130459 hasConceptScore W2760130459C42355184 @default.
- W2760130459 hasConceptScore W2760130459C62520636 @default.
- W2760130459 hasConceptScore W2760130459C73555534 @default.
- W2760130459 hasConceptScore W2760130459C97931131 @default.
- W2760130459 hasIssue "10" @default.
- W2760130459 hasLocation W27601304591 @default.
- W2760130459 hasOpenAccess W2760130459 @default.
- W2760130459 hasPrimaryLocation W27601304591 @default.
- W2760130459 hasRelatedWork W136218548 @default.
- W2760130459 hasRelatedWork W1619305369 @default.
- W2760130459 hasRelatedWork W1964120219 @default.
- W2760130459 hasRelatedWork W2072983093 @default.
- W2760130459 hasRelatedWork W2146355315 @default.
- W2760130459 hasRelatedWork W2171530835 @default.
- W2760130459 hasRelatedWork W2405705173 @default.
- W2760130459 hasRelatedWork W2555425985 @default.
- W2760130459 hasRelatedWork W4225313517 @default.
- W2760130459 hasRelatedWork W4307693546 @default.
- W2760130459 hasVolume "7" @default.
- W2760130459 isParatext "false" @default.
- W2760130459 isRetracted "false" @default.
- W2760130459 magId "2760130459" @default.
- W2760130459 workType "article" @default.