Matches in SemOpenAlex for { <https://semopenalex.org/work/W2760275323> ?p ?o ?g. }
- W2760275323 endingPage "807" @default.
- W2760275323 startingPage "803" @default.
- W2760275323 abstract "In most cases, physicists have studied the migration of biospecies by the use of random walk. In the present article, we apply cellular automaton of traffic model. For simplicity, we deal with an ecosystem contains a prey and predator, and use one-dimensional lattice with two layers. Preys stay on the first layer, but predators uni-directionally move on the second layer. The spatial and temporal evolution is numerically explored. It is shown that the migration has the important effect on populations of both prey and predator. Without migration, the phase transition between a prey-phase and coexisting-phase occurs. In contrast, the phase transition disappears by migration. This is because predator can survive due to migration. We find another phase transition for spatial distribution: in one phase, prey and predator form a stripe pattern of condensation and rarefaction, while in the other phase, they uniformly distribute. The self-organized stripe may be similar to the migration patterns in real ecosystems." @default.
- W2760275323 created "2017-10-06" @default.
- W2760275323 creator A5025105803 @default.
- W2760275323 creator A5028950652 @default.
- W2760275323 date "2018-01-01" @default.
- W2760275323 modified "2023-10-02" @default.
- W2760275323 title "Cellular automaton for migration in ecosystem: Application of traffic model to a predator–prey system" @default.
- W2760275323 cites W1505026374 @default.
- W2760275323 cites W1965455100 @default.
- W2760275323 cites W1966707022 @default.
- W2760275323 cites W1968494201 @default.
- W2760275323 cites W1970617827 @default.
- W2760275323 cites W1974155555 @default.
- W2760275323 cites W1982968605 @default.
- W2760275323 cites W1986861036 @default.
- W2760275323 cites W2014141039 @default.
- W2760275323 cites W2021670982 @default.
- W2760275323 cites W2027948555 @default.
- W2760275323 cites W2031056654 @default.
- W2760275323 cites W2032855333 @default.
- W2760275323 cites W2034321871 @default.
- W2760275323 cites W2037458222 @default.
- W2760275323 cites W2037486779 @default.
- W2760275323 cites W2049176600 @default.
- W2760275323 cites W2052204185 @default.
- W2760275323 cites W2053776663 @default.
- W2760275323 cites W2056343860 @default.
- W2760275323 cites W2061054955 @default.
- W2760275323 cites W2062338126 @default.
- W2760275323 cites W2064120794 @default.
- W2760275323 cites W2081612833 @default.
- W2760275323 cites W2085649099 @default.
- W2760275323 cites W2085848979 @default.
- W2760275323 cites W2089555529 @default.
- W2760275323 cites W2093352993 @default.
- W2760275323 cites W2110051848 @default.
- W2760275323 cites W2135605175 @default.
- W2760275323 cites W2154376416 @default.
- W2760275323 cites W2154517937 @default.
- W2760275323 cites W2159815681 @default.
- W2760275323 cites W2191020894 @default.
- W2760275323 cites W2327098015 @default.
- W2760275323 cites W2358362569 @default.
- W2760275323 cites W2472826505 @default.
- W2760275323 cites W2520059802 @default.
- W2760275323 cites W2561599159 @default.
- W2760275323 cites W3098096425 @default.
- W2760275323 cites W3102601203 @default.
- W2760275323 doi "https://doi.org/10.1016/j.physa.2017.08.151" @default.
- W2760275323 hasPublicationYear "2018" @default.
- W2760275323 type Work @default.
- W2760275323 sameAs 2760275323 @default.
- W2760275323 citedByCount "8" @default.
- W2760275323 countsByYear W27602753232018 @default.
- W2760275323 countsByYear W27602753232019 @default.
- W2760275323 countsByYear W27602753232020 @default.
- W2760275323 countsByYear W27602753232021 @default.
- W2760275323 countsByYear W27602753232022 @default.
- W2760275323 countsByYear W27602753232023 @default.
- W2760275323 crossrefType "journal-article" @default.
- W2760275323 hasAuthorship W2760275323A5025105803 @default.
- W2760275323 hasAuthorship W2760275323A5028950652 @default.
- W2760275323 hasConcept C110872660 @default.
- W2760275323 hasConcept C154945302 @default.
- W2760275323 hasConcept C173656711 @default.
- W2760275323 hasConcept C188382862 @default.
- W2760275323 hasConcept C18903297 @default.
- W2760275323 hasConcept C35527583 @default.
- W2760275323 hasConcept C39432304 @default.
- W2760275323 hasConcept C41008148 @default.
- W2760275323 hasConcept C86803240 @default.
- W2760275323 hasConcept C96857902 @default.
- W2760275323 hasConceptScore W2760275323C110872660 @default.
- W2760275323 hasConceptScore W2760275323C154945302 @default.
- W2760275323 hasConceptScore W2760275323C173656711 @default.
- W2760275323 hasConceptScore W2760275323C188382862 @default.
- W2760275323 hasConceptScore W2760275323C18903297 @default.
- W2760275323 hasConceptScore W2760275323C35527583 @default.
- W2760275323 hasConceptScore W2760275323C39432304 @default.
- W2760275323 hasConceptScore W2760275323C41008148 @default.
- W2760275323 hasConceptScore W2760275323C86803240 @default.
- W2760275323 hasConceptScore W2760275323C96857902 @default.
- W2760275323 hasLocation W27602753231 @default.
- W2760275323 hasOpenAccess W2760275323 @default.
- W2760275323 hasPrimaryLocation W27602753231 @default.
- W2760275323 hasRelatedWork W1752270159 @default.
- W2760275323 hasRelatedWork W1977929880 @default.
- W2760275323 hasRelatedWork W2070581309 @default.
- W2760275323 hasRelatedWork W2093847117 @default.
- W2760275323 hasRelatedWork W2113283967 @default.
- W2760275323 hasRelatedWork W2137003077 @default.
- W2760275323 hasRelatedWork W2246981035 @default.
- W2760275323 hasRelatedWork W2578958840 @default.
- W2760275323 hasRelatedWork W2596704123 @default.
- W2760275323 hasRelatedWork W4205171138 @default.
- W2760275323 hasVolume "490" @default.
- W2760275323 isParatext "false" @default.
- W2760275323 isRetracted "false" @default.