Matches in SemOpenAlex for { <https://semopenalex.org/work/W2760288691> ?p ?o ?g. }
- W2760288691 abstract "Within gauge/gravity duality, we consider the AdS-Schwarzschild metric in arbitrary dimensions. We obtain analytical closed-form results for the two-point function, Wilson loop and entanglement entropy for strip geometries in the finite-temperature field-theory dual. According to the duality, these are given by the area of minimal surfaces of different dimension in the gravity background. Our analytical results involve generalised hypergeometric functions. We show that they reproduce known numerical results to great accuracy. Our results allow to identify new physical behaviour: For instance, we consider the entanglement density, i.e. the difference of entanglement entropies at finite and vanishing temperature divided by the volume of the entangling region. For field theories of dimension seven or higher, we find that the entanglement density displays non-monotonic behaviour as function of l*T, with l the strip width and T the temperature. This implies that the area theorem, proven for RG flows in general dimensions, does not apply here. This may signal the emergence of new degrees of freedom for AdS Schwarzschild black holes in eight or more dimensions." @default.
- W2760288691 created "2017-10-06" @default.
- W2760288691 creator A5043805744 @default.
- W2760288691 creator A5078581746 @default.
- W2760288691 date "2018-03-01" @default.
- W2760288691 modified "2023-10-06" @default.
- W2760288691 title "Non-local observables at finite temperature in AdS/CFT" @default.
- W2760288691 cites W1565112435 @default.
- W2760288691 cites W1889142700 @default.
- W2760288691 cites W1922629554 @default.
- W2760288691 cites W1967697939 @default.
- W2760288691 cites W1969360334 @default.
- W2760288691 cites W1972467964 @default.
- W2760288691 cites W1982113704 @default.
- W2760288691 cites W1984004232 @default.
- W2760288691 cites W1986869222 @default.
- W2760288691 cites W1988015393 @default.
- W2760288691 cites W1991264188 @default.
- W2760288691 cites W1996725573 @default.
- W2760288691 cites W2012010722 @default.
- W2760288691 cites W2012599612 @default.
- W2760288691 cites W2014643986 @default.
- W2760288691 cites W2019692968 @default.
- W2760288691 cites W2023114458 @default.
- W2760288691 cites W2034920898 @default.
- W2760288691 cites W2039712930 @default.
- W2760288691 cites W2044748816 @default.
- W2760288691 cites W2045245342 @default.
- W2760288691 cites W2049219563 @default.
- W2760288691 cites W2053387157 @default.
- W2760288691 cites W2055270007 @default.
- W2760288691 cites W2069651257 @default.
- W2760288691 cites W2069840277 @default.
- W2760288691 cites W2090069870 @default.
- W2760288691 cites W2091184871 @default.
- W2760288691 cites W2093734251 @default.
- W2760288691 cites W2094567531 @default.
- W2760288691 cites W2098383344 @default.
- W2760288691 cites W2107240173 @default.
- W2760288691 cites W2109819630 @default.
- W2760288691 cites W2110283120 @default.
- W2760288691 cites W2113784378 @default.
- W2760288691 cites W2116056895 @default.
- W2760288691 cites W2117535500 @default.
- W2760288691 cites W2120932844 @default.
- W2760288691 cites W2129925474 @default.
- W2760288691 cites W2140983524 @default.
- W2760288691 cites W2147492669 @default.
- W2760288691 cites W2150094752 @default.
- W2760288691 cites W2150986022 @default.
- W2760288691 cites W2153472117 @default.
- W2760288691 cites W2156873825 @default.
- W2760288691 cites W2157171215 @default.
- W2760288691 cites W2159538982 @default.
- W2760288691 cites W2316063653 @default.
- W2760288691 cites W2328425686 @default.
- W2760288691 cites W2548509191 @default.
- W2760288691 cites W2557191108 @default.
- W2760288691 cites W2593495226 @default.
- W2760288691 cites W2750803767 @default.
- W2760288691 cites W2952347112 @default.
- W2760288691 cites W2952627518 @default.
- W2760288691 cites W2963677247 @default.
- W2760288691 cites W3000019265 @default.
- W2760288691 cites W3020983054 @default.
- W2760288691 cites W3037795170 @default.
- W2760288691 cites W3098062506 @default.
- W2760288691 cites W3098568171 @default.
- W2760288691 cites W3099462681 @default.
- W2760288691 cites W3099497801 @default.
- W2760288691 cites W3100407035 @default.
- W2760288691 cites W3100613786 @default.
- W2760288691 cites W3100938138 @default.
- W2760288691 cites W3103658349 @default.
- W2760288691 cites W3103690389 @default.
- W2760288691 cites W3104117971 @default.
- W2760288691 cites W3105539157 @default.
- W2760288691 cites W4238093142 @default.
- W2760288691 cites W4297693385 @default.
- W2760288691 doi "https://doi.org/10.1007/jhep03(2018)034" @default.
- W2760288691 hasPublicationYear "2018" @default.
- W2760288691 type Work @default.
- W2760288691 sameAs 2760288691 @default.
- W2760288691 citedByCount "17" @default.
- W2760288691 countsByYear W27602886912018 @default.
- W2760288691 countsByYear W27602886912019 @default.
- W2760288691 countsByYear W27602886912020 @default.
- W2760288691 countsByYear W27602886912021 @default.
- W2760288691 countsByYear W27602886912022 @default.
- W2760288691 countsByYear W27602886912023 @default.
- W2760288691 crossrefType "journal-article" @default.
- W2760288691 hasAuthorship W2760288691A5043805744 @default.
- W2760288691 hasAuthorship W2760288691A5078581746 @default.
- W2760288691 hasBestOaLocation W27602886911 @default.
- W2760288691 hasConcept C106301342 @default.
- W2760288691 hasConcept C107829132 @default.
- W2760288691 hasConcept C121040770 @default.
- W2760288691 hasConcept C121332964 @default.
- W2760288691 hasConcept C136125196 @default.
- W2760288691 hasConcept C147452769 @default.