Matches in SemOpenAlex for { <https://semopenalex.org/work/W2760293269> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2760293269 endingPage "1020" @default.
- W2760293269 startingPage "1012" @default.
- W2760293269 abstract "Abstract This paper proposes a valid and fast algorithm for low-rank matrix factorization. There are multiple applications for low-rank matrix factorization, and numerous algorithms have been developed to solve this problem. However, many algorithms do not use rank directly; instead, they minimize a nuclear norm by using Singular Value Decomposition (SVD), which requires a huge time cost. In addition, these algorithms often fix the dimension of the factorized matrix, meaning that one must first find an optimum dimension for the factorized matrix in order to obtain a solution. Unfortunately, the optimum dimension is unknown in many practical problems, such as matrix completion and recommender systems. Therefore, it is necessary to develop a faster algorithm that can also estimate the optimum dimension. In this paper, we use the Hidden Matrix Factorized Augmented Lagrangian Method to solve low-rank matrix factorizations. We also add a tool to dynamically estimate the optimum dimension and adjust it while simultaneously running the algorithm. Additionally, in the era of Big Data, there will be more and more large, sparse data. In face of such highly sparse data, our algorithm has the potential to be more effective than other algorithms. We applied it to some practical problems, e.g. Low-Rank Representation(LRR), and matrix completion with constraint. In numerical experiments, it has performed well when applied to both synthetic data and real-world data." @default.
- W2760293269 created "2017-10-06" @default.
- W2760293269 creator A5047580521 @default.
- W2760293269 creator A5049795713 @default.
- W2760293269 creator A5090464603 @default.
- W2760293269 date "2018-01-01" @default.
- W2760293269 modified "2023-09-25" @default.
- W2760293269 title "An algorithm for low-rank matrix factorization and its applications" @default.
- W2760293269 cites W1906374873 @default.
- W2760293269 cites W1997201895 @default.
- W2760293269 cites W2020547911 @default.
- W2760293269 cites W2037594831 @default.
- W2760293269 cites W2043173011 @default.
- W2760293269 cites W2043360443 @default.
- W2760293269 cites W2047071281 @default.
- W2760293269 cites W2056760161 @default.
- W2760293269 cites W2087018183 @default.
- W2760293269 cites W2103972604 @default.
- W2760293269 cites W2104417092 @default.
- W2760293269 cites W2579964591 @default.
- W2760293269 cites W2611328865 @default.
- W2760293269 cites W3105835503 @default.
- W2760293269 doi "https://doi.org/10.1016/j.neucom.2017.09.052" @default.
- W2760293269 hasPublicationYear "2018" @default.
- W2760293269 type Work @default.
- W2760293269 sameAs 2760293269 @default.
- W2760293269 citedByCount "17" @default.
- W2760293269 countsByYear W27602932692018 @default.
- W2760293269 countsByYear W27602932692019 @default.
- W2760293269 countsByYear W27602932692020 @default.
- W2760293269 countsByYear W27602932692021 @default.
- W2760293269 countsByYear W27602932692022 @default.
- W2760293269 countsByYear W27602932692023 @default.
- W2760293269 crossrefType "journal-article" @default.
- W2760293269 hasAuthorship W2760293269A5047580521 @default.
- W2760293269 hasAuthorship W2760293269A5049795713 @default.
- W2760293269 hasAuthorship W2760293269A5090464603 @default.
- W2760293269 hasConcept C106487976 @default.
- W2760293269 hasConcept C11413529 @default.
- W2760293269 hasConcept C114614502 @default.
- W2760293269 hasConcept C121332964 @default.
- W2760293269 hasConcept C158693339 @default.
- W2760293269 hasConcept C159985019 @default.
- W2760293269 hasConcept C164226766 @default.
- W2760293269 hasConcept C187834632 @default.
- W2760293269 hasConcept C192562407 @default.
- W2760293269 hasConcept C33923547 @default.
- W2760293269 hasConcept C41008148 @default.
- W2760293269 hasConcept C42355184 @default.
- W2760293269 hasConcept C62520636 @default.
- W2760293269 hasConceptScore W2760293269C106487976 @default.
- W2760293269 hasConceptScore W2760293269C11413529 @default.
- W2760293269 hasConceptScore W2760293269C114614502 @default.
- W2760293269 hasConceptScore W2760293269C121332964 @default.
- W2760293269 hasConceptScore W2760293269C158693339 @default.
- W2760293269 hasConceptScore W2760293269C159985019 @default.
- W2760293269 hasConceptScore W2760293269C164226766 @default.
- W2760293269 hasConceptScore W2760293269C187834632 @default.
- W2760293269 hasConceptScore W2760293269C192562407 @default.
- W2760293269 hasConceptScore W2760293269C33923547 @default.
- W2760293269 hasConceptScore W2760293269C41008148 @default.
- W2760293269 hasConceptScore W2760293269C42355184 @default.
- W2760293269 hasConceptScore W2760293269C62520636 @default.
- W2760293269 hasLocation W27602932691 @default.
- W2760293269 hasOpenAccess W2760293269 @default.
- W2760293269 hasPrimaryLocation W27602932691 @default.
- W2760293269 hasRelatedWork W1195508317 @default.
- W2760293269 hasRelatedWork W2022065959 @default.
- W2760293269 hasRelatedWork W2025511434 @default.
- W2760293269 hasRelatedWork W2050515752 @default.
- W2760293269 hasRelatedWork W2247591539 @default.
- W2760293269 hasRelatedWork W2903666957 @default.
- W2760293269 hasRelatedWork W2964146881 @default.
- W2760293269 hasRelatedWork W2976200748 @default.
- W2760293269 hasRelatedWork W3121849219 @default.
- W2760293269 hasRelatedWork W4213058796 @default.
- W2760293269 hasVolume "275" @default.
- W2760293269 isParatext "false" @default.
- W2760293269 isRetracted "false" @default.
- W2760293269 magId "2760293269" @default.
- W2760293269 workType "article" @default.