Matches in SemOpenAlex for { <https://semopenalex.org/work/W2760299618> ?p ?o ?g. }
- W2760299618 abstract "It is often the case that researchers wish to simultaneously explore the behavior of, and estimate the overall risk for, multiple related diseases with varying rarity while accounting for potential spatial and/or temporal correlation. In this paper, we propose a flexible class of multivariate spatiotemporal mixture models to fill this role. Further, these models offer flexibility with the potential for model selection as well as the ability to accommodate lifestyle, socioeconomic, and physical environmental variables with spatial, temporal, or both structures. Here, we explore the capability of this approach via a large‐scale simulation study and examine a motivating data example involving three cancers in South Carolina. The results, which are focused on four model variants, suggest that all models possess the ability to recover the simulation ground truth and display an improved model fit over two baseline Knorr‐Held spatiotemporal interaction model variants in a real data application." @default.
- W2760299618 created "2017-10-06" @default.
- W2760299618 creator A5005069983 @default.
- W2760299618 creator A5023301432 @default.
- W2760299618 creator A5027004799 @default.
- W2760299618 creator A5027238712 @default.
- W2760299618 creator A5057583579 @default.
- W2760299618 creator A5081006907 @default.
- W2760299618 date "2017-09-25" @default.
- W2760299618 modified "2023-10-14" @default.
- W2760299618 title "Spatiotemporal multivariate mixture models for Bayesian model selection in disease mapping" @default.
- W2760299618 cites W105319308 @default.
- W2760299618 cites W1161690271 @default.
- W2760299618 cites W1536497620 @default.
- W2760299618 cites W1886991014 @default.
- W2760299618 cites W1966730755 @default.
- W2760299618 cites W1980092349 @default.
- W2760299618 cites W1982651526 @default.
- W2760299618 cites W1989730355 @default.
- W2760299618 cites W2004014822 @default.
- W2760299618 cites W2021268614 @default.
- W2760299618 cites W2024343822 @default.
- W2760299618 cites W2057765075 @default.
- W2760299618 cites W2063421258 @default.
- W2760299618 cites W2063937957 @default.
- W2760299618 cites W2067230193 @default.
- W2760299618 cites W2069993596 @default.
- W2760299618 cites W2092990185 @default.
- W2760299618 cites W2114100577 @default.
- W2760299618 cites W2114192876 @default.
- W2760299618 cites W2123485292 @default.
- W2760299618 cites W2130902307 @default.
- W2760299618 cites W2133305600 @default.
- W2760299618 cites W2140199570 @default.
- W2760299618 cites W2148534890 @default.
- W2760299618 cites W2157601393 @default.
- W2760299618 cites W2165936664 @default.
- W2760299618 cites W2177317192 @default.
- W2760299618 cites W2306189743 @default.
- W2760299618 cites W2345136754 @default.
- W2760299618 cites W2474855059 @default.
- W2760299618 cites W2508190678 @default.
- W2760299618 cites W2526140749 @default.
- W2760299618 cites W2577414888 @default.
- W2760299618 cites W2914156828 @default.
- W2760299618 cites W4250518393 @default.
- W2760299618 cites W4255113605 @default.
- W2760299618 doi "https://doi.org/10.1002/env.2465" @default.
- W2760299618 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5722237" @default.
- W2760299618 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29230091" @default.
- W2760299618 hasPublicationYear "2017" @default.
- W2760299618 type Work @default.
- W2760299618 sameAs 2760299618 @default.
- W2760299618 citedByCount "11" @default.
- W2760299618 countsByYear W27602996182017 @default.
- W2760299618 countsByYear W27602996182018 @default.
- W2760299618 countsByYear W27602996182019 @default.
- W2760299618 countsByYear W27602996182020 @default.
- W2760299618 countsByYear W27602996182021 @default.
- W2760299618 countsByYear W27602996182022 @default.
- W2760299618 countsByYear W27602996182023 @default.
- W2760299618 crossrefType "journal-article" @default.
- W2760299618 hasAuthorship W2760299618A5005069983 @default.
- W2760299618 hasAuthorship W2760299618A5023301432 @default.
- W2760299618 hasAuthorship W2760299618A5027004799 @default.
- W2760299618 hasAuthorship W2760299618A5027238712 @default.
- W2760299618 hasAuthorship W2760299618A5057583579 @default.
- W2760299618 hasAuthorship W2760299618A5081006907 @default.
- W2760299618 hasBestOaLocation W27602996182 @default.
- W2760299618 hasConcept C105795698 @default.
- W2760299618 hasConcept C107673813 @default.
- W2760299618 hasConcept C117220453 @default.
- W2760299618 hasConcept C119857082 @default.
- W2760299618 hasConcept C124101348 @default.
- W2760299618 hasConcept C149782125 @default.
- W2760299618 hasConcept C150060386 @default.
- W2760299618 hasConcept C154945302 @default.
- W2760299618 hasConcept C160234255 @default.
- W2760299618 hasConcept C161584116 @default.
- W2760299618 hasConcept C2524010 @default.
- W2760299618 hasConcept C2777212361 @default.
- W2760299618 hasConcept C2780598303 @default.
- W2760299618 hasConcept C33923547 @default.
- W2760299618 hasConcept C41008148 @default.
- W2760299618 hasConcept C76155785 @default.
- W2760299618 hasConcept C81917197 @default.
- W2760299618 hasConcept C93959086 @default.
- W2760299618 hasConceptScore W2760299618C105795698 @default.
- W2760299618 hasConceptScore W2760299618C107673813 @default.
- W2760299618 hasConceptScore W2760299618C117220453 @default.
- W2760299618 hasConceptScore W2760299618C119857082 @default.
- W2760299618 hasConceptScore W2760299618C124101348 @default.
- W2760299618 hasConceptScore W2760299618C149782125 @default.
- W2760299618 hasConceptScore W2760299618C150060386 @default.
- W2760299618 hasConceptScore W2760299618C154945302 @default.
- W2760299618 hasConceptScore W2760299618C160234255 @default.
- W2760299618 hasConceptScore W2760299618C161584116 @default.
- W2760299618 hasConceptScore W2760299618C2524010 @default.
- W2760299618 hasConceptScore W2760299618C2777212361 @default.
- W2760299618 hasConceptScore W2760299618C2780598303 @default.