Matches in SemOpenAlex for { <https://semopenalex.org/work/W2760349059> ?p ?o ?g. }
- W2760349059 endingPage "13" @default.
- W2760349059 startingPage "1" @default.
- W2760349059 abstract "Software effort estimation (SEE) plays a key role in predicting the effort needed to complete software development task. However, the conclusion instability across learners has affected the implementation of SEE models. This instability can be attributed to the lack of an effort classification benchmark that software researchers and practitioners can use to facilitate and interpret prediction results. To ameliorate the conclusion instability challenge by introducing a classification and self-guided interpretation scheme for SEE. We first used the density quantile function to discretise the effort recorded in 14 datasets into three classes (high, low and moderate) and built regression models for these datasets. The results of the regression models were an effort estimate, termed output 1, which was then classified into an effort class, termed output 2. We refer to the models generated in this study as duplex output models as they return two outputs. The introduced duplex output models trained with the leave-one-out cross validation and evaluated with MAE, BMMRE and adjusted R2, can be used to predict both the software effort and the class of software effort estimate. Robust statistical tests (Welch's t-test and Kruskal-Wallis H-test) were used to examine the statistical significant differences in the models’ prediction performances. We observed the following: (1) the duplex output models not only predicted the effort estimates, they also offered a guide to interpreting the effort expended; (2) incorporating the genetic search algorithm into the duplex output model allowed the sampling of relevant features for improved prediction accuracy; and (3) ElasticNet, a hybrid regression, provided superior prediction accuracy over the ATLM, the state-of-the-art baseline regression. The results show that the duplex output model provides a self-guided benchmark for interpreting estimated software effort. ElasticNet can also serve as a baseline model for SEE." @default.
- W2760349059 created "2017-10-06" @default.
- W2760349059 creator A5012394915 @default.
- W2760349059 creator A5020836505 @default.
- W2760349059 creator A5044777354 @default.
- W2760349059 creator A5051403641 @default.
- W2760349059 date "2018-02-01" @default.
- W2760349059 modified "2023-10-14" @default.
- W2760349059 title "Duplex output software effort estimation model with self-guided interpretation" @default.
- W2760349059 cites W1882502823 @default.
- W2760349059 cites W1964544799 @default.
- W2760349059 cites W1969192618 @default.
- W2760349059 cites W1985560975 @default.
- W2760349059 cites W1991625760 @default.
- W2760349059 cites W1992516444 @default.
- W2760349059 cites W2000642745 @default.
- W2760349059 cites W2001851943 @default.
- W2760349059 cites W2009786711 @default.
- W2760349059 cites W2011533104 @default.
- W2760349059 cites W2020669164 @default.
- W2760349059 cites W2022537368 @default.
- W2760349059 cites W2024188017 @default.
- W2760349059 cites W2029867649 @default.
- W2760349059 cites W2039240409 @default.
- W2760349059 cites W2050551672 @default.
- W2760349059 cites W2057395060 @default.
- W2760349059 cites W2059410845 @default.
- W2760349059 cites W2063876764 @default.
- W2760349059 cites W2067085644 @default.
- W2760349059 cites W2070567333 @default.
- W2760349059 cites W2083383564 @default.
- W2760349059 cites W2090682913 @default.
- W2760349059 cites W2090954654 @default.
- W2760349059 cites W2091235628 @default.
- W2760349059 cites W2097670073 @default.
- W2760349059 cites W2102899008 @default.
- W2760349059 cites W2103296684 @default.
- W2760349059 cites W2104236502 @default.
- W2760349059 cites W2105757562 @default.
- W2760349059 cites W2111758151 @default.
- W2760349059 cites W2114105368 @default.
- W2760349059 cites W2119862467 @default.
- W2760349059 cites W2122825543 @default.
- W2760349059 cites W2125595978 @default.
- W2760349059 cites W2140964565 @default.
- W2760349059 cites W2166773957 @default.
- W2760349059 cites W2203366176 @default.
- W2760349059 cites W2345506238 @default.
- W2760349059 cites W2415339614 @default.
- W2760349059 cites W2494851992 @default.
- W2760349059 cites W2514698551 @default.
- W2760349059 cites W2517597314 @default.
- W2760349059 cites W2743323681 @default.
- W2760349059 cites W3104979525 @default.
- W2760349059 cites W4234698323 @default.
- W2760349059 cites W4294541781 @default.
- W2760349059 cites W917774098 @default.
- W2760349059 doi "https://doi.org/10.1016/j.infsof.2017.09.010" @default.
- W2760349059 hasPublicationYear "2018" @default.
- W2760349059 type Work @default.
- W2760349059 sameAs 2760349059 @default.
- W2760349059 citedByCount "23" @default.
- W2760349059 countsByYear W27603490592018 @default.
- W2760349059 countsByYear W27603490592019 @default.
- W2760349059 countsByYear W27603490592020 @default.
- W2760349059 countsByYear W27603490592021 @default.
- W2760349059 countsByYear W27603490592022 @default.
- W2760349059 countsByYear W27603490592023 @default.
- W2760349059 crossrefType "journal-article" @default.
- W2760349059 hasAuthorship W2760349059A5012394915 @default.
- W2760349059 hasAuthorship W2760349059A5020836505 @default.
- W2760349059 hasAuthorship W2760349059A5044777354 @default.
- W2760349059 hasAuthorship W2760349059A5051403641 @default.
- W2760349059 hasConcept C105795698 @default.
- W2760349059 hasConcept C118671147 @default.
- W2760349059 hasConcept C119857082 @default.
- W2760349059 hasConcept C124101348 @default.
- W2760349059 hasConcept C13280743 @default.
- W2760349059 hasConcept C154945302 @default.
- W2760349059 hasConcept C185798385 @default.
- W2760349059 hasConcept C199360897 @default.
- W2760349059 hasConcept C205649164 @default.
- W2760349059 hasConcept C2777904410 @default.
- W2760349059 hasConcept C33923547 @default.
- W2760349059 hasConcept C41008148 @default.
- W2760349059 hasConcept C45804977 @default.
- W2760349059 hasConcept C54355233 @default.
- W2760349059 hasConcept C552990157 @default.
- W2760349059 hasConcept C83546350 @default.
- W2760349059 hasConcept C86803240 @default.
- W2760349059 hasConcept C99611785 @default.
- W2760349059 hasConceptScore W2760349059C105795698 @default.
- W2760349059 hasConceptScore W2760349059C118671147 @default.
- W2760349059 hasConceptScore W2760349059C119857082 @default.
- W2760349059 hasConceptScore W2760349059C124101348 @default.
- W2760349059 hasConceptScore W2760349059C13280743 @default.
- W2760349059 hasConceptScore W2760349059C154945302 @default.
- W2760349059 hasConceptScore W2760349059C185798385 @default.