Matches in SemOpenAlex for { <https://semopenalex.org/work/W2760585068> ?p ?o ?g. }
- W2760585068 abstract "Covariance matrix and its inverse, known as the precision matrix, have many applications in multivariate analysis because their elements can exhibit the variance, correlation, covariance, and conditional independence between variables. The practice of estimating the precision matrix directly without involving any matrix inversion has obtained significant attention in the literature. We review the methods that have been implemented in R and their R packages, particularly when there are more variables than data samples and discuss ideas behind them. We describe how sparse precision matrix estimation methods can be used to infer network structure. Finally, we discuss methods that are suitable for gene coexpression network construction. WIREs Comput Stat 2017, 9:e1415. doi: 10.1002/wics.1415 This article is categorized under: Statistical Models > Linear Models Applications of Computational Statistics > Computational and Molecular Biology Statistical and Graphical Methods of Data Analysis > Multivariate Analysis" @default.
- W2760585068 created "2017-10-06" @default.
- W2760585068 creator A5001036744 @default.
- W2760585068 creator A5055050168 @default.
- W2760585068 date "2017-09-28" @default.
- W2760585068 modified "2023-09-24" @default.
- W2760585068 title "Estimation of covariance and precision matrix, network structure, and a view toward systems biology" @default.
- W2760585068 cites W1494413412 @default.
- W2760585068 cites W1523985187 @default.
- W2760585068 cites W1547176439 @default.
- W2760585068 cites W1625972580 @default.
- W2760585068 cites W1824047490 @default.
- W2760585068 cites W1905223283 @default.
- W2760585068 cites W1959730594 @default.
- W2760585068 cites W1966327575 @default.
- W2760585068 cites W1968756693 @default.
- W2760585068 cites W1973651601 @default.
- W2760585068 cites W1989373272 @default.
- W2760585068 cites W1989727964 @default.
- W2760585068 cites W1993746015 @default.
- W2760585068 cites W1995436190 @default.
- W2760585068 cites W2016474243 @default.
- W2760585068 cites W2020925091 @default.
- W2760585068 cites W2024514015 @default.
- W2760585068 cites W2032167314 @default.
- W2760585068 cites W2034308888 @default.
- W2760585068 cites W2060705109 @default.
- W2760585068 cites W2062125287 @default.
- W2760585068 cites W2070232376 @default.
- W2760585068 cites W2074360197 @default.
- W2760585068 cites W2077177391 @default.
- W2760585068 cites W2082935924 @default.
- W2760585068 cites W2087760247 @default.
- W2760585068 cites W2095243891 @default.
- W2760585068 cites W2098372663 @default.
- W2760585068 cites W2117443065 @default.
- W2760585068 cites W2123270810 @default.
- W2760585068 cites W2131933020 @default.
- W2760585068 cites W2132555912 @default.
- W2760585068 cites W2142972916 @default.
- W2760585068 cites W2146442376 @default.
- W2760585068 cites W2149673004 @default.
- W2760585068 cites W2150926065 @default.
- W2760585068 cites W2157611962 @default.
- W2760585068 cites W2161920970 @default.
- W2760585068 cites W216325278 @default.
- W2760585068 cites W2170296577 @default.
- W2760585068 cites W2271406867 @default.
- W2760585068 cites W2272700822 @default.
- W2760585068 cites W2467466245 @default.
- W2760585068 cites W2479782352 @default.
- W2760585068 cites W2490800645 @default.
- W2760585068 cites W2522041912 @default.
- W2760585068 cites W2562162676 @default.
- W2760585068 cites W2571422352 @default.
- W2760585068 cites W2587528990 @default.
- W2760585068 cites W2787894218 @default.
- W2760585068 cites W2949681703 @default.
- W2760585068 cites W2963273504 @default.
- W2760585068 cites W3098635105 @default.
- W2760585068 cites W3098834468 @default.
- W2760585068 cites W3099609308 @default.
- W2760585068 cites W3105340263 @default.
- W2760585068 cites W3121832289 @default.
- W2760585068 cites W3124158341 @default.
- W2760585068 cites W3126123762 @default.
- W2760585068 doi "https://doi.org/10.1002/wics.1415" @default.
- W2760585068 hasPublicationYear "2017" @default.
- W2760585068 type Work @default.
- W2760585068 sameAs 2760585068 @default.
- W2760585068 citedByCount "19" @default.
- W2760585068 countsByYear W27605850682018 @default.
- W2760585068 countsByYear W27605850682019 @default.
- W2760585068 countsByYear W27605850682020 @default.
- W2760585068 countsByYear W27605850682021 @default.
- W2760585068 countsByYear W27605850682022 @default.
- W2760585068 countsByYear W27605850682023 @default.
- W2760585068 crossrefType "journal-article" @default.
- W2760585068 hasAuthorship W2760585068A5001036744 @default.
- W2760585068 hasAuthorship W2760585068A5055050168 @default.
- W2760585068 hasBestOaLocation W27605850682 @default.
- W2760585068 hasConcept C105795698 @default.
- W2760585068 hasConcept C106487976 @default.
- W2760585068 hasConcept C11413529 @default.
- W2760585068 hasConcept C124101348 @default.
- W2760585068 hasConcept C155846161 @default.
- W2760585068 hasConcept C159985019 @default.
- W2760585068 hasConcept C161584116 @default.
- W2760585068 hasConcept C178650346 @default.
- W2760585068 hasConcept C180877172 @default.
- W2760585068 hasConcept C185142706 @default.
- W2760585068 hasConcept C192562407 @default.
- W2760585068 hasConcept C33923547 @default.
- W2760585068 hasConcept C35651441 @default.
- W2760585068 hasConcept C41008148 @default.
- W2760585068 hasConcept C79772020 @default.
- W2760585068 hasConceptScore W2760585068C105795698 @default.
- W2760585068 hasConceptScore W2760585068C106487976 @default.
- W2760585068 hasConceptScore W2760585068C11413529 @default.
- W2760585068 hasConceptScore W2760585068C124101348 @default.