Matches in SemOpenAlex for { <https://semopenalex.org/work/W2760607312> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2760607312 endingPage "79" @default.
- W2760607312 startingPage "67" @default.
- W2760607312 abstract "Background: Feature extraction in medical image processing still remains a challenge, especially in high-dimensionality datasets, where the expected number of available samples is considerably lower than the dimension of the feature space. This is a common problem in real-world data, and, specifically, in medical image pro- cessing as, while images are composed of hundreds of thousands voxels, only a reduced number of patients are available. Objective: Extracting descriptive and discriminative features to represent each sample (image) by a small number of features, which is particularly important in classification task, due to the curse of dimensionality problem. Methods: In this paper we solve this recognition problem by means of sparse representations of the data, which also provides an arena to multimodal image (PET and MRI) data classification by combining specialized classifiers. Thus, a novel method to effectively combine SVC classifiers is presented here, which uses the distance to the hyperplane computed for each class in each classifier allowing to select the most discriminative image modality in each case. The discriminative power of each modality also provides information about the illness evolution; while functional changes are clearly found in Alzheimer’s diagnosed patients (AD) when compared to control subjects (CN), structural changes seem to be more relevant at the early stages of the illness, affecting Mild Cognitive Impairment (MCI) patients. Results: Classification experiments using 68 CN, 70 AD and 111 MCI images from the Alzheimer's Disease Neuroimaging Initiative database have been performed and assessed by cross-validation to show the effectiveness of the proposed method. Accuracy values of up to 92% and 84% for CN/AD and CN/MCI classification are achieved. Conclusions: The method presented in this work shows that sparse representations of brain images are of importance for codifying and transferring relevant image features, as they may capture the salient features while maintaining lightweight data transactions. In fact, the method proposed in this work outperforms the classification results obtained using projection methods such as Principal Component Analysis for extracting representative features of the images." @default.
- W2760607312 created "2017-10-06" @default.
- W2760607312 creator A5001892018 @default.
- W2760607312 creator A5011354002 @default.
- W2760607312 creator A5035352293 @default.
- W2760607312 creator A5043559032 @default.
- W2760607312 creator A5067023995 @default.
- W2760607312 creator A5076012204 @default.
- W2760607312 date "2017-12-21" @default.
- W2760607312 modified "2023-10-15" @default.
- W2760607312 title "Discriminative Sparse Features for Alzheimer's Disease Diagnosis Using Multimodal Image Data" @default.
- W2760607312 doi "https://doi.org/10.2174/1567205014666170922101135" @default.
- W2760607312 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28934923" @default.
- W2760607312 hasPublicationYear "2017" @default.
- W2760607312 type Work @default.
- W2760607312 sameAs 2760607312 @default.
- W2760607312 citedByCount "16" @default.
- W2760607312 countsByYear W27606073122018 @default.
- W2760607312 countsByYear W27606073122019 @default.
- W2760607312 countsByYear W27606073122020 @default.
- W2760607312 countsByYear W27606073122021 @default.
- W2760607312 countsByYear W27606073122022 @default.
- W2760607312 countsByYear W27606073122023 @default.
- W2760607312 crossrefType "journal-article" @default.
- W2760607312 hasAuthorship W2760607312A5001892018 @default.
- W2760607312 hasAuthorship W2760607312A5011354002 @default.
- W2760607312 hasAuthorship W2760607312A5035352293 @default.
- W2760607312 hasAuthorship W2760607312A5043559032 @default.
- W2760607312 hasAuthorship W2760607312A5067023995 @default.
- W2760607312 hasAuthorship W2760607312A5076012204 @default.
- W2760607312 hasConcept C111030470 @default.
- W2760607312 hasConcept C115961682 @default.
- W2760607312 hasConcept C119857082 @default.
- W2760607312 hasConcept C153180895 @default.
- W2760607312 hasConcept C154945302 @default.
- W2760607312 hasConcept C41008148 @default.
- W2760607312 hasConcept C52622490 @default.
- W2760607312 hasConcept C54170458 @default.
- W2760607312 hasConcept C70518039 @default.
- W2760607312 hasConcept C75294576 @default.
- W2760607312 hasConcept C83665646 @default.
- W2760607312 hasConcept C95623464 @default.
- W2760607312 hasConcept C97931131 @default.
- W2760607312 hasConceptScore W2760607312C111030470 @default.
- W2760607312 hasConceptScore W2760607312C115961682 @default.
- W2760607312 hasConceptScore W2760607312C119857082 @default.
- W2760607312 hasConceptScore W2760607312C153180895 @default.
- W2760607312 hasConceptScore W2760607312C154945302 @default.
- W2760607312 hasConceptScore W2760607312C41008148 @default.
- W2760607312 hasConceptScore W2760607312C52622490 @default.
- W2760607312 hasConceptScore W2760607312C54170458 @default.
- W2760607312 hasConceptScore W2760607312C70518039 @default.
- W2760607312 hasConceptScore W2760607312C75294576 @default.
- W2760607312 hasConceptScore W2760607312C83665646 @default.
- W2760607312 hasConceptScore W2760607312C95623464 @default.
- W2760607312 hasConceptScore W2760607312C97931131 @default.
- W2760607312 hasIssue "1" @default.
- W2760607312 hasLocation W27606073121 @default.
- W2760607312 hasLocation W27606073122 @default.
- W2760607312 hasOpenAccess W2760607312 @default.
- W2760607312 hasPrimaryLocation W27606073121 @default.
- W2760607312 hasRelatedWork W2120026622 @default.
- W2760607312 hasRelatedWork W2120164251 @default.
- W2760607312 hasRelatedWork W2153315159 @default.
- W2760607312 hasRelatedWork W2477004454 @default.
- W2760607312 hasRelatedWork W259157601 @default.
- W2760607312 hasRelatedWork W2761785940 @default.
- W2760607312 hasRelatedWork W2965546495 @default.
- W2760607312 hasRelatedWork W2971377935 @default.
- W2760607312 hasRelatedWork W3103844505 @default.
- W2760607312 hasRelatedWork W4205463238 @default.
- W2760607312 hasVolume "15" @default.
- W2760607312 isParatext "false" @default.
- W2760607312 isRetracted "false" @default.
- W2760607312 magId "2760607312" @default.
- W2760607312 workType "article" @default.