Matches in SemOpenAlex for { <https://semopenalex.org/work/W2760890781> ?p ?o ?g. }
- W2760890781 endingPage "1362" @default.
- W2760890781 startingPage "1333" @default.
- W2760890781 abstract "Most studies of migmatites examine how anatexis occurred in the most fertile units and what happened to that melt, whereas the associated minor lithologies are typically ignored. The Kinawa migmatite in the southern São Francisco Craton of Brazil is the product of water-fluxed melting of a leucogranodiorite that contained dykes of amphibolite. The migmatite consists mostly of pink diatexites, metatexites and leucosomes, but it also contains schollen of amphibolite. This study examines the behaviour of these minor mafic rocks during anatexis to determine what role they play in the formation of migmatites and development of granitic magmas in their source region.The amphibolites are massive or banded Hbl + Pl, and rarely Hbl + Pl + Cpx, schollen in the diatexite migmatite. The amphibolite schollen melted very little, and show a complex morphology suggesting mechanical and chemical interaction with the enclosing leucocratic pink diatexite migmatite. Diatexites and leucosomes immediately adjacent to the schollen have a considerably higher proportion of amphibole (up to 12%) and/or biotite (up to 10%) compared with the diatexite a few tens of centimeters farther away. Six stages of disaggregation and interaction of mafic schollen with the enclosing diatexite magma are recognized: (1) amphibolite layers break up to form schollen, but are mineralogically and texturally unchanged; (2) melt infiltrates into fractures and foliation in the schollen; (3) schollen disaggregate into swarms of single amphibole crystals within the diatexites; (4) amphibole is partially replaced by biotite; (5) flow of the enclosing diatexite magma arranges the detached amphibole crystals into schlieren and aggregates of biotite; (6) detached crystals are completely replaced by biotite and dispersed by magmatic flow to produce a mesocratic to melanocratic homogeneous diatexite. Geochemical modelling indicates that the composition of the diatexites and leucosomes is changed by the wholesale entrainment of the disaggregated mafic schollen or in some cases by the preferential entrainment of detached hornblende or plagioclase crystals. This contamination increases the maficity of initially felsic, leucodiatexite magma, by the addition of FeO + MgO, CaO and TiO2 (which results in a concomitant decrease in SiO2), to become a mesocratic to melanocratic diatexite magma that is comparable with typical I-type granites found around the world. Entrainment of mafic material and hornblende in particular strongly influences the behaviour of the rare earth elements, lowering LaN/YbN ratios. Thus, non-protolith mafic lithologies within migmatites represent a source of contamination for anatectic melts that results in a significant increase in maficity." @default.
- W2760890781 created "2017-10-20" @default.
- W2760890781 creator A5061242190 @default.
- W2760890781 creator A5064070016 @default.
- W2760890781 creator A5082672463 @default.
- W2760890781 date "2017-07-01" @default.
- W2760890781 modified "2023-09-30" @default.
- W2760890781 title "Enhancing Maficity of Granitic Magma during Anatexis: Entrainment of Infertile Mafic Lithologies" @default.
- W2760890781 cites W1966564764 @default.
- W2760890781 cites W1969185546 @default.
- W2760890781 cites W1969859799 @default.
- W2760890781 cites W1978220484 @default.
- W2760890781 cites W1984651916 @default.
- W2760890781 cites W1985691504 @default.
- W2760890781 cites W1994802915 @default.
- W2760890781 cites W1995608652 @default.
- W2760890781 cites W1996285909 @default.
- W2760890781 cites W2007589667 @default.
- W2760890781 cites W2009525078 @default.
- W2760890781 cites W2013601702 @default.
- W2760890781 cites W2016549469 @default.
- W2760890781 cites W2021147759 @default.
- W2760890781 cites W2023327969 @default.
- W2760890781 cites W2023661439 @default.
- W2760890781 cites W2026475967 @default.
- W2760890781 cites W2039035650 @default.
- W2760890781 cites W2040549377 @default.
- W2760890781 cites W2049866195 @default.
- W2760890781 cites W2053663363 @default.
- W2760890781 cites W2061837047 @default.
- W2760890781 cites W2064215462 @default.
- W2760890781 cites W2065823329 @default.
- W2760890781 cites W2068671620 @default.
- W2760890781 cites W2069783931 @default.
- W2760890781 cites W2078926476 @default.
- W2760890781 cites W2084521659 @default.
- W2760890781 cites W2086557360 @default.
- W2760890781 cites W2089210477 @default.
- W2760890781 cites W2092664696 @default.
- W2760890781 cites W2095074518 @default.
- W2760890781 cites W2097264512 @default.
- W2760890781 cites W2101935903 @default.
- W2760890781 cites W2104162955 @default.
- W2760890781 cites W2110536712 @default.
- W2760890781 cites W2117995498 @default.
- W2760890781 cites W2120697819 @default.
- W2760890781 cites W2132374990 @default.
- W2760890781 cites W2138981698 @default.
- W2760890781 cites W2148145491 @default.
- W2760890781 cites W2150295324 @default.
- W2760890781 cites W2151018778 @default.
- W2760890781 cites W2163661859 @default.
- W2760890781 cites W2171623971 @default.
- W2760890781 cites W2173613421 @default.
- W2760890781 cites W2223597483 @default.
- W2760890781 cites W2233375133 @default.
- W2760890781 cites W2267457832 @default.
- W2760890781 cites W2318064085 @default.
- W2760890781 cites W2318733152 @default.
- W2760890781 cites W2370878606 @default.
- W2760890781 cites W2472168361 @default.
- W2760890781 cites W2513076101 @default.
- W2760890781 cites W2550443421 @default.
- W2760890781 cites W2581733081 @default.
- W2760890781 cites W583039854 @default.
- W2760890781 doi "https://doi.org/10.1093/petrology/egx056" @default.
- W2760890781 hasPublicationYear "2017" @default.
- W2760890781 type Work @default.
- W2760890781 sameAs 2760890781 @default.
- W2760890781 citedByCount "22" @default.
- W2760890781 countsByYear W27608907812018 @default.
- W2760890781 countsByYear W27608907812019 @default.
- W2760890781 countsByYear W27608907812020 @default.
- W2760890781 countsByYear W27608907812021 @default.
- W2760890781 countsByYear W27608907812022 @default.
- W2760890781 countsByYear W27608907812023 @default.
- W2760890781 crossrefType "journal-article" @default.
- W2760890781 hasAuthorship W2760890781A5061242190 @default.
- W2760890781 hasAuthorship W2760890781A5064070016 @default.
- W2760890781 hasAuthorship W2760890781A5082672463 @default.
- W2760890781 hasBestOaLocation W27608907811 @default.
- W2760890781 hasConcept C109007969 @default.
- W2760890781 hasConcept C114793014 @default.
- W2760890781 hasConcept C119073576 @default.
- W2760890781 hasConcept C120806208 @default.
- W2760890781 hasConcept C127313418 @default.
- W2760890781 hasConcept C146588470 @default.
- W2760890781 hasConcept C151730666 @default.
- W2760890781 hasConcept C167284885 @default.
- W2760890781 hasConcept C171701179 @default.
- W2760890781 hasConcept C17409809 @default.
- W2760890781 hasConcept C183222429 @default.
- W2760890781 hasConcept C26687426 @default.
- W2760890781 hasConcept C2776698055 @default.
- W2760890781 hasConcept C2777229588 @default.
- W2760890781 hasConcept C2779604315 @default.
- W2760890781 hasConcept C2779870107 @default.
- W2760890781 hasConcept C4992710 @default.