Matches in SemOpenAlex for { <https://semopenalex.org/work/W2760894977> ?p ?o ?g. }
- W2760894977 endingPage "114" @default.
- W2760894977 startingPage "114" @default.
- W2760894977 abstract "Time series forecasting using machine learning algorithms has gained popularity recently. Random forest is a machine learning algorithm implemented in time series forecasting; however, most of its forecasting properties have remained unexplored. Here we focus on assessing the performance of random forests in one-step forecasting using two large datasets of short time series with the aim to suggest an optimal set of predictor variables. Furthermore, we compare its performance to benchmarking methods. The first dataset is composed by 16,000 simulated time series from a variety of Autoregressive Fractionally Integrated Moving Average (ARFIMA) models. The second dataset consists of 135 mean annual temperature time series. The highest predictive performance of RF is observed when using a low number of recent lagged predictor variables. This outcome could be useful in relevant future applications, with the prospect to achieve higher predictive accuracy." @default.
- W2760894977 created "2017-10-20" @default.
- W2760894977 creator A5003329348 @default.
- W2760894977 creator A5045992049 @default.
- W2760894977 date "2017-10-04" @default.
- W2760894977 modified "2023-10-05" @default.
- W2760894977 title "Variable Selection in Time Series Forecasting Using Random Forests" @default.
- W2760894977 cites W1520812622 @default.
- W2760894977 cites W1547333707 @default.
- W2760894977 cites W1578517626 @default.
- W2760894977 cites W1831050183 @default.
- W2760894977 cites W1969865884 @default.
- W2760894977 cites W1970940206 @default.
- W2760894977 cites W1977698057 @default.
- W2760894977 cites W1989130706 @default.
- W2760894977 cites W2003436252 @default.
- W2760894977 cites W2014928429 @default.
- W2760894977 cites W2016210396 @default.
- W2760894977 cites W2020721183 @default.
- W2760894977 cites W2023932725 @default.
- W2760894977 cites W2030888282 @default.
- W2760894977 cites W2034489756 @default.
- W2760894977 cites W2036870214 @default.
- W2760894977 cites W2041018175 @default.
- W2760894977 cites W2045199291 @default.
- W2760894977 cites W2048665112 @default.
- W2760894977 cites W2059804518 @default.
- W2760894977 cites W2062981820 @default.
- W2760894977 cites W2066296745 @default.
- W2760894977 cites W2084912667 @default.
- W2760894977 cites W2089217930 @default.
- W2760894977 cites W2116512828 @default.
- W2760894977 cites W2117829824 @default.
- W2760894977 cites W2128599926 @default.
- W2760894977 cites W2140349953 @default.
- W2760894977 cites W2145856394 @default.
- W2760894977 cites W2147028502 @default.
- W2760894977 cites W2155261478 @default.
- W2760894977 cites W2162387923 @default.
- W2760894977 cites W2168156818 @default.
- W2760894977 cites W2169921071 @default.
- W2760894977 cites W2174096604 @default.
- W2760894977 cites W2216946510 @default.
- W2760894977 cites W2241930543 @default.
- W2760894977 cites W2270937275 @default.
- W2760894977 cites W2275088575 @default.
- W2760894977 cites W2294467502 @default.
- W2760894977 cites W2398789413 @default.
- W2760894977 cites W2604842920 @default.
- W2760894977 cites W2735689754 @default.
- W2760894977 cites W2787894218 @default.
- W2760894977 cites W2797846142 @default.
- W2760894977 cites W2911964244 @default.
- W2760894977 cites W3121452939 @default.
- W2760894977 cites W4230410911 @default.
- W2760894977 cites W4254687493 @default.
- W2760894977 cites W429766147 @default.
- W2760894977 cites W4236339997 @default.
- W2760894977 doi "https://doi.org/10.3390/a10040114" @default.
- W2760894977 hasPublicationYear "2017" @default.
- W2760894977 type Work @default.
- W2760894977 sameAs 2760894977 @default.
- W2760894977 citedByCount "100" @default.
- W2760894977 countsByYear W27608949772018 @default.
- W2760894977 countsByYear W27608949772019 @default.
- W2760894977 countsByYear W27608949772020 @default.
- W2760894977 countsByYear W27608949772021 @default.
- W2760894977 countsByYear W27608949772022 @default.
- W2760894977 countsByYear W27608949772023 @default.
- W2760894977 crossrefType "journal-article" @default.
- W2760894977 hasAuthorship W2760894977A5003329348 @default.
- W2760894977 hasAuthorship W2760894977A5045992049 @default.
- W2760894977 hasBestOaLocation W27608949771 @default.
- W2760894977 hasConcept C119857082 @default.
- W2760894977 hasConcept C124101348 @default.
- W2760894977 hasConcept C1297061 @default.
- W2760894977 hasConcept C134306372 @default.
- W2760894977 hasConcept C143724316 @default.
- W2760894977 hasConcept C144133560 @default.
- W2760894977 hasConcept C148483581 @default.
- W2760894977 hasConcept C149782125 @default.
- W2760894977 hasConcept C151406439 @default.
- W2760894977 hasConcept C151730666 @default.
- W2760894977 hasConcept C154945302 @default.
- W2760894977 hasConcept C159877910 @default.
- W2760894977 hasConcept C162853370 @default.
- W2760894977 hasConcept C169258074 @default.
- W2760894977 hasConcept C182365436 @default.
- W2760894977 hasConcept C2986394398 @default.
- W2760894977 hasConcept C33923547 @default.
- W2760894977 hasConcept C41008148 @default.
- W2760894977 hasConcept C45804977 @default.
- W2760894977 hasConcept C86251818 @default.
- W2760894977 hasConcept C86803240 @default.
- W2760894977 hasConcept C91602232 @default.
- W2760894977 hasConceptScore W2760894977C119857082 @default.
- W2760894977 hasConceptScore W2760894977C124101348 @default.
- W2760894977 hasConceptScore W2760894977C1297061 @default.