Matches in SemOpenAlex for { <https://semopenalex.org/work/W2760944304> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2760944304 endingPage "556" @default.
- W2760944304 startingPage "550" @default.
- W2760944304 abstract "Computer-Aided Detection/Diagnosis (CAD) tools were created to assist the detection and diagnosis of early stage cancers, decreasing false negative rate and improving radiologists’ efficiency. Convolutional Neural Networks (CNNs) are one example of deep learning algorithms that proved to be successful in image classification. In this paper we aim to study the application of CNNs to the classification of lesions in mammograms. One major problem in the training of CNNs for medical applications is the large dataset of images that is often required but seldom available. To solve this problem, we use a transfer learning approach, which is based on three different networks that were pre-trained on the Imagenet dataset. We then investigate the performance of these pre-trained CNNs and two types of image normalization to classify lesions in mammograms. The best results were obtained using the Caffe reference model for the CNN with no image normalization." @default.
- W2760944304 created "2017-10-20" @default.
- W2760944304 creator A5009791474 @default.
- W2760944304 creator A5058968878 @default.
- W2760944304 creator A5068257158 @default.
- W2760944304 date "2018-07-26" @default.
- W2760944304 modified "2023-10-16" @default.
- W2760944304 title "Lesion classification in mammograms using convolutional neural networks and transfer learning" @default.
- W2760944304 cites W2011136342 @default.
- W2760944304 cites W2050997943 @default.
- W2760944304 cites W2120580182 @default.
- W2760944304 cites W2155893237 @default.
- W2760944304 cites W2253429366 @default.
- W2760944304 cites W2284539364 @default.
- W2760944304 cites W2299565249 @default.
- W2760944304 cites W2309224640 @default.
- W2760944304 cites W2346062110 @default.
- W2760944304 doi "https://doi.org/10.1080/21681163.2018.1498392" @default.
- W2760944304 hasPublicationYear "2018" @default.
- W2760944304 type Work @default.
- W2760944304 sameAs 2760944304 @default.
- W2760944304 citedByCount "11" @default.
- W2760944304 countsByYear W27609443042019 @default.
- W2760944304 countsByYear W27609443042021 @default.
- W2760944304 countsByYear W27609443042022 @default.
- W2760944304 countsByYear W27609443042023 @default.
- W2760944304 crossrefType "journal-article" @default.
- W2760944304 hasAuthorship W2760944304A5009791474 @default.
- W2760944304 hasAuthorship W2760944304A5058968878 @default.
- W2760944304 hasAuthorship W2760944304A5068257158 @default.
- W2760944304 hasBestOaLocation W27609443042 @default.
- W2760944304 hasConcept C142724271 @default.
- W2760944304 hasConcept C150899416 @default.
- W2760944304 hasConcept C153180895 @default.
- W2760944304 hasConcept C154945302 @default.
- W2760944304 hasConcept C2781156865 @default.
- W2760944304 hasConcept C41008148 @default.
- W2760944304 hasConcept C71924100 @default.
- W2760944304 hasConcept C81363708 @default.
- W2760944304 hasConceptScore W2760944304C142724271 @default.
- W2760944304 hasConceptScore W2760944304C150899416 @default.
- W2760944304 hasConceptScore W2760944304C153180895 @default.
- W2760944304 hasConceptScore W2760944304C154945302 @default.
- W2760944304 hasConceptScore W2760944304C2781156865 @default.
- W2760944304 hasConceptScore W2760944304C41008148 @default.
- W2760944304 hasConceptScore W2760944304C71924100 @default.
- W2760944304 hasConceptScore W2760944304C81363708 @default.
- W2760944304 hasFunder F4320334779 @default.
- W2760944304 hasIssue "5-6" @default.
- W2760944304 hasLocation W27609443041 @default.
- W2760944304 hasLocation W27609443042 @default.
- W2760944304 hasLocation W27609443043 @default.
- W2760944304 hasOpenAccess W2760944304 @default.
- W2760944304 hasPrimaryLocation W27609443041 @default.
- W2760944304 hasRelatedWork W2738221750 @default.
- W2760944304 hasRelatedWork W2972069047 @default.
- W2760944304 hasRelatedWork W3012393889 @default.
- W2760944304 hasRelatedWork W3091976719 @default.
- W2760944304 hasRelatedWork W3135818718 @default.
- W2760944304 hasRelatedWork W3153891452 @default.
- W2760944304 hasRelatedWork W3166467183 @default.
- W2760944304 hasRelatedWork W3189091156 @default.
- W2760944304 hasRelatedWork W3192840557 @default.
- W2760944304 hasRelatedWork W4206156330 @default.
- W2760944304 hasVolume "7" @default.
- W2760944304 isParatext "false" @default.
- W2760944304 isRetracted "false" @default.
- W2760944304 magId "2760944304" @default.
- W2760944304 workType "article" @default.