Matches in SemOpenAlex for { <https://semopenalex.org/work/W2760960868> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2760960868 abstract "Automated blood vessels detection on retinal images is an important process in the development of pathologies analysis systems. This paper describes about an automated blood vessel extraction using high-order local autocorrelation (HLAC) on retinal images. Although HLAC features are shift-invariant, HLAC features are weak to turned image. Therefore, a method was improved by the addition of HLAC features to a polar transformed image. We have proposed a method using HLAC, pixel-based-features and three filters. However, we have not investigated about feature selection and machine learning method. Therefore, this paper discusses about effective features and machine learning method. We tested eight methods by extension of HLAC features, addition of 4 kinds of pixel-based features, difference of preprocessing techniques, and 3 kinds of machine learning methods. Machine learning methods are general artificial neural network (ANN), a network using two ANNs, and Boosting algorithm. As a result, our already proposed method was the best. When the method was tested by using “Digital Retinal Images for Vessel Extraction” (DRIVE) database, the area under the curve (AUC) based on receiver operating characteristics (ROC) analysis was reached to 0.960." @default.
- W2760960868 created "2017-10-20" @default.
- W2760960868 creator A5007691999 @default.
- W2760960868 creator A5015332269 @default.
- W2760960868 creator A5027406783 @default.
- W2760960868 creator A5028013962 @default.
- W2760960868 creator A5044704087 @default.
- W2760960868 creator A5046858082 @default.
- W2760960868 creator A5063870842 @default.
- W2760960868 date "2017-10-13" @default.
- W2760960868 modified "2023-09-22" @default.
- W2760960868 title "Automated Blood Vessel Extraction Based on High-Order Local Autocorrelation Features on Retinal Images" @default.
- W2760960868 cites W2116628223 @default.
- W2760960868 cites W2135908022 @default.
- W2760960868 cites W2150769593 @default.
- W2760960868 cites W2151082289 @default.
- W2760960868 cites W2163344010 @default.
- W2760960868 cites W2309754896 @default.
- W2760960868 doi "https://doi.org/10.1007/978-3-319-68195-5_87" @default.
- W2760960868 hasPublicationYear "2017" @default.
- W2760960868 type Work @default.
- W2760960868 sameAs 2760960868 @default.
- W2760960868 citedByCount "1" @default.
- W2760960868 countsByYear W27609608682019 @default.
- W2760960868 crossrefType "book-chapter" @default.
- W2760960868 hasAuthorship W2760960868A5007691999 @default.
- W2760960868 hasAuthorship W2760960868A5015332269 @default.
- W2760960868 hasAuthorship W2760960868A5027406783 @default.
- W2760960868 hasAuthorship W2760960868A5028013962 @default.
- W2760960868 hasAuthorship W2760960868A5044704087 @default.
- W2760960868 hasAuthorship W2760960868A5046858082 @default.
- W2760960868 hasAuthorship W2760960868A5063870842 @default.
- W2760960868 hasConcept C105795698 @default.
- W2760960868 hasConcept C153180895 @default.
- W2760960868 hasConcept C154945302 @default.
- W2760960868 hasConcept C160633673 @default.
- W2760960868 hasConcept C185592680 @default.
- W2760960868 hasConcept C2780827179 @default.
- W2760960868 hasConcept C31972630 @default.
- W2760960868 hasConcept C33923547 @default.
- W2760960868 hasConcept C34736171 @default.
- W2760960868 hasConcept C41008148 @default.
- W2760960868 hasConcept C52622490 @default.
- W2760960868 hasConcept C5297727 @default.
- W2760960868 hasConcept C55493867 @default.
- W2760960868 hasConceptScore W2760960868C105795698 @default.
- W2760960868 hasConceptScore W2760960868C153180895 @default.
- W2760960868 hasConceptScore W2760960868C154945302 @default.
- W2760960868 hasConceptScore W2760960868C160633673 @default.
- W2760960868 hasConceptScore W2760960868C185592680 @default.
- W2760960868 hasConceptScore W2760960868C2780827179 @default.
- W2760960868 hasConceptScore W2760960868C31972630 @default.
- W2760960868 hasConceptScore W2760960868C33923547 @default.
- W2760960868 hasConceptScore W2760960868C34736171 @default.
- W2760960868 hasConceptScore W2760960868C41008148 @default.
- W2760960868 hasConceptScore W2760960868C52622490 @default.
- W2760960868 hasConceptScore W2760960868C5297727 @default.
- W2760960868 hasConceptScore W2760960868C55493867 @default.
- W2760960868 hasLocation W27609608681 @default.
- W2760960868 hasOpenAccess W2760960868 @default.
- W2760960868 hasPrimaryLocation W27609608681 @default.
- W2760960868 hasRelatedWork W1488982820 @default.
- W2760960868 hasRelatedWork W1968573840 @default.
- W2760960868 hasRelatedWork W2036166601 @default.
- W2760960868 hasRelatedWork W2080529918 @default.
- W2760960868 hasRelatedWork W2083558158 @default.
- W2760960868 hasRelatedWork W2354756786 @default.
- W2760960868 hasRelatedWork W2412645770 @default.
- W2760960868 hasRelatedWork W2539852814 @default.
- W2760960868 hasRelatedWork W2590533492 @default.
- W2760960868 hasRelatedWork W2766473159 @default.
- W2760960868 hasRelatedWork W2768086057 @default.
- W2760960868 hasRelatedWork W2768171769 @default.
- W2760960868 hasRelatedWork W2810595359 @default.
- W2760960868 hasRelatedWork W2899190255 @default.
- W2760960868 hasRelatedWork W2900266997 @default.
- W2760960868 hasRelatedWork W2925038043 @default.
- W2760960868 hasRelatedWork W2949833723 @default.
- W2760960868 hasRelatedWork W3005350161 @default.
- W2760960868 hasRelatedWork W3164217954 @default.
- W2760960868 hasRelatedWork W3184579101 @default.
- W2760960868 isParatext "false" @default.
- W2760960868 isRetracted "false" @default.
- W2760960868 magId "2760960868" @default.
- W2760960868 workType "book-chapter" @default.