Matches in SemOpenAlex for { <https://semopenalex.org/work/W2760972011> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2760972011 abstract "In this thesis we study the self-Floer theory of a monotone Lagrangian submanifold $L$ of a closed symplectic manifold $X$ in the presence of various kinds of symmetry. First we consider the group $mathrm{Symp}(X, L)$ of symplectomorphisms of $X$ preserving $L$ setwise, and extend its action on the Oh spectral sequence to coefficients of arbitrary characteristic, working over an enriched Novikov ring. This imposes constraints on the differentials in the spectral sequence which force them to vanish in certain situations. We then specialise to the case where $L$ is $K$-homogeneous for a compact Lie group $K$, meaning roughly that $X$ is Kaehler, $K$ acts on $X$ by holomorphic automorphisms, and $L$ is a Lagrangian orbit. By studying holomorphic discs with boundary on $L$ we compute the image of low codimension $K$-invariant subvarieties of $X$ under the length zero closed-open string map. This places restrictions on the self-Floer cohomology of $L$ which generalise and refine the Auroux-Kontsevich-Seidel criterion. These often result in the need to work over fields of specific positive characteristics in order to obtain non-zero cohomology. The disc analysis is then developed further, with the introduction of the notion of poles and a reflection mechanism for completing holomorphic discs into spheres. This theory is applied to two main families of examples. The first is the collection of four Platonic Lagrangians in quasihomogeneous threefolds of $mathrm{SL}(2, mathbb{C})$, starting with the Chiang Lagrangian in $mathbb{CP}^3$. These were previously studied by Evans and Lekili, who computed the self-Floer cohomology of the latter. We simplify their argument, which is based on an explicit construction of the Biran-Cornea pearl complex, and deal with the remaining three cases. The second is a family of $mathrm{PSU}(n)$-homogeneous Lagrangians in products of projective spaces. Here the presence of both discrete and continuous symmetries leads to some unusual properties: in particular we obtain non-displaceable monotone Lagrangians which are narrow in a strong sense. We also discuss related examples including applications of Perutz's symplectic Gysin sequence and quilt functors. The thesis concludes with a discussion of directions for further research and a collection of technical appendices." @default.
- W2760972011 created "2017-10-20" @default.
- W2760972011 creator A5005460187 @default.
- W2760972011 date "2017-10-01" @default.
- W2760972011 modified "2023-09-24" @default.
- W2760972011 title "Symmetry in monotone Lagrangian Floer theory" @default.
- W2760972011 doi "https://doi.org/10.17863/cam.13678" @default.
- W2760972011 hasPublicationYear "2017" @default.
- W2760972011 type Work @default.
- W2760972011 sameAs 2760972011 @default.
- W2760972011 citedByCount "2" @default.
- W2760972011 countsByYear W27609720112018 @default.
- W2760972011 crossrefType "dissertation" @default.
- W2760972011 hasAuthorship W2760972011A5005460187 @default.
- W2760972011 hasConcept C118712358 @default.
- W2760972011 hasConcept C136660716 @default.
- W2760972011 hasConcept C168619227 @default.
- W2760972011 hasConcept C178609977 @default.
- W2760972011 hasConcept C190470478 @default.
- W2760972011 hasConcept C202444582 @default.
- W2760972011 hasConcept C204575570 @default.
- W2760972011 hasConcept C2524010 @default.
- W2760972011 hasConcept C2834757 @default.
- W2760972011 hasConcept C33923547 @default.
- W2760972011 hasConcept C37914503 @default.
- W2760972011 hasConcept C72738302 @default.
- W2760972011 hasConcept C78606066 @default.
- W2760972011 hasConceptScore W2760972011C118712358 @default.
- W2760972011 hasConceptScore W2760972011C136660716 @default.
- W2760972011 hasConceptScore W2760972011C168619227 @default.
- W2760972011 hasConceptScore W2760972011C178609977 @default.
- W2760972011 hasConceptScore W2760972011C190470478 @default.
- W2760972011 hasConceptScore W2760972011C202444582 @default.
- W2760972011 hasConceptScore W2760972011C204575570 @default.
- W2760972011 hasConceptScore W2760972011C2524010 @default.
- W2760972011 hasConceptScore W2760972011C2834757 @default.
- W2760972011 hasConceptScore W2760972011C33923547 @default.
- W2760972011 hasConceptScore W2760972011C37914503 @default.
- W2760972011 hasConceptScore W2760972011C72738302 @default.
- W2760972011 hasConceptScore W2760972011C78606066 @default.
- W2760972011 hasLocation W27609720111 @default.
- W2760972011 hasOpenAccess W2760972011 @default.
- W2760972011 hasPrimaryLocation W27609720111 @default.
- W2760972011 hasRelatedWork W1424865626 @default.
- W2760972011 hasRelatedWork W1555346472 @default.
- W2760972011 hasRelatedWork W1576262899 @default.
- W2760972011 hasRelatedWork W1620906956 @default.
- W2760972011 hasRelatedWork W1866093078 @default.
- W2760972011 hasRelatedWork W1871984022 @default.
- W2760972011 hasRelatedWork W2222750246 @default.
- W2760972011 hasRelatedWork W2541571967 @default.
- W2760972011 hasRelatedWork W2602022573 @default.
- W2760972011 hasRelatedWork W2754315068 @default.
- W2760972011 hasRelatedWork W2902829067 @default.
- W2760972011 hasRelatedWork W2922147109 @default.
- W2760972011 hasRelatedWork W2945167683 @default.
- W2760972011 hasRelatedWork W2951787401 @default.
- W2760972011 hasRelatedWork W2953325197 @default.
- W2760972011 hasRelatedWork W2962804696 @default.
- W2760972011 hasRelatedWork W2963016522 @default.
- W2760972011 hasRelatedWork W3033506490 @default.
- W2760972011 hasRelatedWork W3092680431 @default.
- W2760972011 hasRelatedWork W3210696619 @default.
- W2760972011 isParatext "false" @default.
- W2760972011 isRetracted "false" @default.
- W2760972011 magId "2760972011" @default.
- W2760972011 workType "dissertation" @default.