Matches in SemOpenAlex for { <https://semopenalex.org/work/W2760981301> ?p ?o ?g. }
- W2760981301 endingPage "178" @default.
- W2760981301 startingPage "167" @default.
- W2760981301 abstract "There are ever-increasing interests to determine effectively structural diagnosis and conditional assessment for structural health monitoring (SHM). Although research has been extensively conducted in the conventional physical-based vibration analysis, advancement in sensor technologies and complexity in structural systems post great challenges in the effectiveness of these techniques. Alternatively, various data-driven based machine learning techniques are recently emerging tools to data clarification. In this study, a new vibration-based machine learning was proposed for condition assessment and damage detection in SHM. Three vibration-based feature extraction methods, autoregressive, vector autoregressive and singular value decomposition methods, were used as damage sensitive features. A kernel function based support vector machine was used to facilitate the identification between damaged and undamaged cases. A benchmark with varying environment and operational conditions in the literature was selected to verify the effectiveness of the proposed methods. The results showed that three feature methods could effectively map damage features in a high dimensional feature space, thereby dramatically improving the effectiveness and accuracy of data classification. Moreover, comparisons of results revealed that the singular value decomposition methods exhibit higher sensitivity to damage states as compared to other two approaches." @default.
- W2760981301 created "2017-10-20" @default.
- W2760981301 creator A5029938873 @default.
- W2760981301 creator A5030875142 @default.
- W2760981301 creator A5060168920 @default.
- W2760981301 creator A5081196403 @default.
- W2760981301 creator A5089524314 @default.
- W2760981301 date "2017-10-13" @default.
- W2760981301 modified "2023-10-18" @default.
- W2760981301 title "Vibration-Based Support Vector Machine for Structural Health Monitoring" @default.
- W2760981301 cites W1500974069 @default.
- W2760981301 cites W1589046910 @default.
- W2760981301 cites W1596717185 @default.
- W2760981301 cites W195955158 @default.
- W2760981301 cites W1968884227 @default.
- W2760981301 cites W1983716041 @default.
- W2760981301 cites W1990746212 @default.
- W2760981301 cites W2003531265 @default.
- W2760981301 cites W2025664069 @default.
- W2760981301 cites W2051463173 @default.
- W2760981301 cites W2055006308 @default.
- W2760981301 cites W2087784802 @default.
- W2760981301 cites W2090578011 @default.
- W2760981301 cites W2108728387 @default.
- W2760981301 cites W2136483970 @default.
- W2760981301 cites W2167908488 @default.
- W2760981301 cites W2427947207 @default.
- W2760981301 cites W2510050171 @default.
- W2760981301 cites W2515942139 @default.
- W2760981301 cites W2519021100 @default.
- W2760981301 cites W2572493078 @default.
- W2760981301 doi "https://doi.org/10.1007/978-3-319-67443-8_14" @default.
- W2760981301 hasPublicationYear "2017" @default.
- W2760981301 type Work @default.
- W2760981301 sameAs 2760981301 @default.
- W2760981301 citedByCount "13" @default.
- W2760981301 countsByYear W27609813012018 @default.
- W2760981301 countsByYear W27609813012019 @default.
- W2760981301 countsByYear W27609813012020 @default.
- W2760981301 countsByYear W27609813012021 @default.
- W2760981301 countsByYear W27609813012022 @default.
- W2760981301 countsByYear W27609813012023 @default.
- W2760981301 crossrefType "book-chapter" @default.
- W2760981301 hasAuthorship W2760981301A5029938873 @default.
- W2760981301 hasAuthorship W2760981301A5030875142 @default.
- W2760981301 hasAuthorship W2760981301A5060168920 @default.
- W2760981301 hasAuthorship W2760981301A5081196403 @default.
- W2760981301 hasAuthorship W2760981301A5089524314 @default.
- W2760981301 hasConcept C105795698 @default.
- W2760981301 hasConcept C114614502 @default.
- W2760981301 hasConcept C116834253 @default.
- W2760981301 hasConcept C119857082 @default.
- W2760981301 hasConcept C121332964 @default.
- W2760981301 hasConcept C12267149 @default.
- W2760981301 hasConcept C124101348 @default.
- W2760981301 hasConcept C127413603 @default.
- W2760981301 hasConcept C13280743 @default.
- W2760981301 hasConcept C138885662 @default.
- W2760981301 hasConcept C153180895 @default.
- W2760981301 hasConcept C154945302 @default.
- W2760981301 hasConcept C159877910 @default.
- W2760981301 hasConcept C185798385 @default.
- W2760981301 hasConcept C198394728 @default.
- W2760981301 hasConcept C205649164 @default.
- W2760981301 hasConcept C21200559 @default.
- W2760981301 hasConcept C22789450 @default.
- W2760981301 hasConcept C24326235 @default.
- W2760981301 hasConcept C2776247918 @default.
- W2760981301 hasConcept C2776401178 @default.
- W2760981301 hasConcept C33923547 @default.
- W2760981301 hasConcept C41008148 @default.
- W2760981301 hasConcept C41895202 @default.
- W2760981301 hasConcept C52622490 @default.
- W2760981301 hasConcept C59822182 @default.
- W2760981301 hasConcept C62520636 @default.
- W2760981301 hasConcept C66938386 @default.
- W2760981301 hasConcept C74193536 @default.
- W2760981301 hasConcept C83665646 @default.
- W2760981301 hasConcept C86803240 @default.
- W2760981301 hasConceptScore W2760981301C105795698 @default.
- W2760981301 hasConceptScore W2760981301C114614502 @default.
- W2760981301 hasConceptScore W2760981301C116834253 @default.
- W2760981301 hasConceptScore W2760981301C119857082 @default.
- W2760981301 hasConceptScore W2760981301C121332964 @default.
- W2760981301 hasConceptScore W2760981301C12267149 @default.
- W2760981301 hasConceptScore W2760981301C124101348 @default.
- W2760981301 hasConceptScore W2760981301C127413603 @default.
- W2760981301 hasConceptScore W2760981301C13280743 @default.
- W2760981301 hasConceptScore W2760981301C138885662 @default.
- W2760981301 hasConceptScore W2760981301C153180895 @default.
- W2760981301 hasConceptScore W2760981301C154945302 @default.
- W2760981301 hasConceptScore W2760981301C159877910 @default.
- W2760981301 hasConceptScore W2760981301C185798385 @default.
- W2760981301 hasConceptScore W2760981301C198394728 @default.
- W2760981301 hasConceptScore W2760981301C205649164 @default.
- W2760981301 hasConceptScore W2760981301C21200559 @default.
- W2760981301 hasConceptScore W2760981301C22789450 @default.
- W2760981301 hasConceptScore W2760981301C24326235 @default.