Matches in SemOpenAlex for { <https://semopenalex.org/work/W2760993847> ?p ?o ?g. }
- W2760993847 endingPage "573" @default.
- W2760993847 startingPage "560" @default.
- W2760993847 abstract "We study approach to the large-time jammed state of the deposited particles in the model of random sequential adsorption. The convergence laws are usually derived from the argument of Pomeau which includes the assumption of the dominance, at large enough times, of small landing regions into each of which only a single particle can be deposited without overlapping earlier deposited particles and which, after a certain time are no longer created by depositions in larger gaps. The second assumption has been that the size distribution of gaps open for particle-center landing in this large-time small-gaps regime is finite in the limit of zero gap size. We report numerical Monte Carlo studies of a recently introduced model of random sequential adsorption on patterned one-dimensional substrates that suggest that the second assumption must be generalized. We argue that a region exists in the parameter space of the studied model in which the gap-size distribution in the Pomeau large-time regime actually linearly vanishes at zero gap sizes. In another region, the distribution develops a threshold property, i.e., there are no small gaps below a certain gap size. We discuss the implications of these findings for new asymptotic power-law and exponential-modified-by-a-power-law convergences to jamming in irreversible one-dimensional deposition." @default.
- W2760993847 created "2017-10-20" @default.
- W2760993847 creator A5004656313 @default.
- W2760993847 creator A5005469426 @default.
- W2760993847 date "2018-02-01" @default.
- W2760993847 modified "2023-10-05" @default.
- W2760993847 title "Nonstandard convergence to jamming in random sequential adsorption: The case of patterned one-dimensional substrates" @default.
- W2760993847 cites W1966422823 @default.
- W2760993847 cites W1968876433 @default.
- W2760993847 cites W1968894016 @default.
- W2760993847 cites W1979847871 @default.
- W2760993847 cites W1980194166 @default.
- W2760993847 cites W1980755128 @default.
- W2760993847 cites W1981359870 @default.
- W2760993847 cites W1985819728 @default.
- W2760993847 cites W1991770390 @default.
- W2760993847 cites W1991968504 @default.
- W2760993847 cites W1995531293 @default.
- W2760993847 cites W1997922930 @default.
- W2760993847 cites W2007083328 @default.
- W2760993847 cites W2007388342 @default.
- W2760993847 cites W2008556037 @default.
- W2760993847 cites W2028577602 @default.
- W2760993847 cites W2030654814 @default.
- W2760993847 cites W2031712980 @default.
- W2760993847 cites W2033619880 @default.
- W2760993847 cites W2034999218 @default.
- W2760993847 cites W2037284421 @default.
- W2760993847 cites W2040405040 @default.
- W2760993847 cites W2041319778 @default.
- W2760993847 cites W2042405566 @default.
- W2760993847 cites W2047555677 @default.
- W2760993847 cites W2057560703 @default.
- W2760993847 cites W2059477977 @default.
- W2760993847 cites W2061540788 @default.
- W2760993847 cites W2066182693 @default.
- W2760993847 cites W2070249517 @default.
- W2760993847 cites W2070646648 @default.
- W2760993847 cites W2071672723 @default.
- W2760993847 cites W2072516503 @default.
- W2760993847 cites W2072983227 @default.
- W2760993847 cites W2073303389 @default.
- W2760993847 cites W2080613634 @default.
- W2760993847 cites W2081518497 @default.
- W2760993847 cites W2095158709 @default.
- W2760993847 cites W2100408591 @default.
- W2760993847 cites W2103866467 @default.
- W2760993847 cites W2118644500 @default.
- W2760993847 cites W2123620384 @default.
- W2760993847 cites W2134512697 @default.
- W2760993847 cites W2157444437 @default.
- W2760993847 cites W2169831003 @default.
- W2760993847 cites W2170248394 @default.
- W2760993847 cites W2319023244 @default.
- W2760993847 cites W2530862894 @default.
- W2760993847 cites W2562956205 @default.
- W2760993847 cites W2587144637 @default.
- W2760993847 cites W2734884280 @default.
- W2760993847 cites W2951741278 @default.
- W2760993847 cites W3098297942 @default.
- W2760993847 cites W3104798772 @default.
- W2760993847 cites W3105570361 @default.
- W2760993847 cites W2091761241 @default.
- W2760993847 doi "https://doi.org/10.1016/j.physa.2017.09.102" @default.
- W2760993847 hasPublicationYear "2018" @default.
- W2760993847 type Work @default.
- W2760993847 sameAs 2760993847 @default.
- W2760993847 citedByCount "5" @default.
- W2760993847 countsByYear W27609938472018 @default.
- W2760993847 countsByYear W27609938472019 @default.
- W2760993847 countsByYear W27609938472020 @default.
- W2760993847 countsByYear W27609938472023 @default.
- W2760993847 crossrefType "journal-article" @default.
- W2760993847 hasAuthorship W2760993847A5004656313 @default.
- W2760993847 hasAuthorship W2760993847A5005469426 @default.
- W2760993847 hasBestOaLocation W27609938472 @default.
- W2760993847 hasConcept C105795698 @default.
- W2760993847 hasConcept C110121322 @default.
- W2760993847 hasConcept C121332964 @default.
- W2760993847 hasConcept C121864883 @default.
- W2760993847 hasConcept C134306372 @default.
- W2760993847 hasConcept C151201525 @default.
- W2760993847 hasConcept C151620405 @default.
- W2760993847 hasConcept C162324750 @default.
- W2760993847 hasConcept C26873012 @default.
- W2760993847 hasConcept C2777303404 @default.
- W2760993847 hasConcept C2779079576 @default.
- W2760993847 hasConcept C33923547 @default.
- W2760993847 hasConcept C50522688 @default.
- W2760993847 hasConcept C87040749 @default.
- W2760993847 hasConceptScore W2760993847C105795698 @default.
- W2760993847 hasConceptScore W2760993847C110121322 @default.
- W2760993847 hasConceptScore W2760993847C121332964 @default.
- W2760993847 hasConceptScore W2760993847C121864883 @default.
- W2760993847 hasConceptScore W2760993847C134306372 @default.
- W2760993847 hasConceptScore W2760993847C151201525 @default.
- W2760993847 hasConceptScore W2760993847C151620405 @default.
- W2760993847 hasConceptScore W2760993847C162324750 @default.