Matches in SemOpenAlex for { <https://semopenalex.org/work/W2761115346> ?p ?o ?g. }
- W2761115346 endingPage "362" @default.
- W2761115346 startingPage "352" @default.
- W2761115346 abstract "The main objective of this paper was to use different soft computing methods to forecast hurricane wave height over Gulf of Mexico. For this purpose, three well-known soft computing methods; Support Vector Machine (SVM), Artificial Neural Network (ANN), and Random Forest (RF) were used. The friction velocity was also used instead of wind speed at 10 m height. For this case, three different assumptions were considered for computing friction velocity. For the analysis, one month (from August 20th, 2008 to September 20th, 2008) data including passage of hurricanes Gustav and Ike over Gulf of Mexico were collected from six different buoys. Next, seven different parameters were used to train the models based on the data observed from five buoys. Later the trained models were used to forecast observed wave height in the sixth buoy in different lead times. The results showed that using more number of input parameters leads to better performance of the methods, especially in longer lead times. Moreover, in longer lead times, the effect of other parameters such as air pressure were increased and assisted the models to outperform previous models. In addition; different assumptions for friction velocity eventuated comparable results." @default.
- W2761115346 created "2017-10-20" @default.
- W2761115346 creator A5015108652 @default.
- W2761115346 creator A5077357871 @default.
- W2761115346 date "2017-12-01" @default.
- W2761115346 modified "2023-10-16" @default.
- W2761115346 title "Forecasting hurricane wave height in Gulf of Mexico using soft computing methods" @default.
- W2761115346 cites W1488086418 @default.
- W2761115346 cites W1596717185 @default.
- W2761115346 cites W1969539925 @default.
- W2761115346 cites W1969553617 @default.
- W2761115346 cites W1971722118 @default.
- W2761115346 cites W1972536897 @default.
- W2761115346 cites W1980710144 @default.
- W2761115346 cites W1982723853 @default.
- W2761115346 cites W1984559080 @default.
- W2761115346 cites W1984667420 @default.
- W2761115346 cites W1985067164 @default.
- W2761115346 cites W1990653740 @default.
- W2761115346 cites W1996377012 @default.
- W2761115346 cites W2001601916 @default.
- W2761115346 cites W2015426571 @default.
- W2761115346 cites W2025342965 @default.
- W2761115346 cites W2028745710 @default.
- W2761115346 cites W2036258507 @default.
- W2761115346 cites W2037599238 @default.
- W2761115346 cites W2043352376 @default.
- W2761115346 cites W2043550022 @default.
- W2761115346 cites W2043818580 @default.
- W2761115346 cites W2046075829 @default.
- W2761115346 cites W2050874490 @default.
- W2761115346 cites W2058674828 @default.
- W2761115346 cites W2059318616 @default.
- W2761115346 cites W2062724642 @default.
- W2761115346 cites W2066912770 @default.
- W2761115346 cites W2073491572 @default.
- W2761115346 cites W2079529795 @default.
- W2761115346 cites W2087550825 @default.
- W2761115346 cites W2095442203 @default.
- W2761115346 cites W2113548869 @default.
- W2761115346 cites W2126353901 @default.
- W2761115346 cites W2136653283 @default.
- W2761115346 cites W2136672825 @default.
- W2761115346 cites W2150302930 @default.
- W2761115346 cites W2151571212 @default.
- W2761115346 cites W2176328291 @default.
- W2761115346 cites W2299124850 @default.
- W2761115346 cites W2322485592 @default.
- W2761115346 cites W2419007014 @default.
- W2761115346 cites W2546433740 @default.
- W2761115346 cites W2554645383 @default.
- W2761115346 cites W2707130695 @default.
- W2761115346 cites W2911964244 @default.
- W2761115346 cites W657675841 @default.
- W2761115346 doi "https://doi.org/10.1016/j.oceaneng.2017.10.003" @default.
- W2761115346 hasPublicationYear "2017" @default.
- W2761115346 type Work @default.
- W2761115346 sameAs 2761115346 @default.
- W2761115346 citedByCount "34" @default.
- W2761115346 countsByYear W27611153462018 @default.
- W2761115346 countsByYear W27611153462019 @default.
- W2761115346 countsByYear W27611153462020 @default.
- W2761115346 countsByYear W27611153462021 @default.
- W2761115346 countsByYear W27611153462022 @default.
- W2761115346 countsByYear W27611153462023 @default.
- W2761115346 crossrefType "journal-article" @default.
- W2761115346 hasAuthorship W2761115346A5015108652 @default.
- W2761115346 hasAuthorship W2761115346A5077357871 @default.
- W2761115346 hasConcept C111368507 @default.
- W2761115346 hasConcept C119857082 @default.
- W2761115346 hasConcept C12267149 @default.
- W2761115346 hasConcept C127313418 @default.
- W2761115346 hasConcept C127413603 @default.
- W2761115346 hasConcept C140073362 @default.
- W2761115346 hasConcept C153294291 @default.
- W2761115346 hasConcept C161067210 @default.
- W2761115346 hasConcept C165082838 @default.
- W2761115346 hasConcept C199104240 @default.
- W2761115346 hasConcept C205649164 @default.
- W2761115346 hasConcept C2779847632 @default.
- W2761115346 hasConcept C39432304 @default.
- W2761115346 hasConcept C41008148 @default.
- W2761115346 hasConcept C50644808 @default.
- W2761115346 hasConcept C70620910 @default.
- W2761115346 hasConcept C85910571 @default.
- W2761115346 hasConceptScore W2761115346C111368507 @default.
- W2761115346 hasConceptScore W2761115346C119857082 @default.
- W2761115346 hasConceptScore W2761115346C12267149 @default.
- W2761115346 hasConceptScore W2761115346C127313418 @default.
- W2761115346 hasConceptScore W2761115346C127413603 @default.
- W2761115346 hasConceptScore W2761115346C140073362 @default.
- W2761115346 hasConceptScore W2761115346C153294291 @default.
- W2761115346 hasConceptScore W2761115346C161067210 @default.
- W2761115346 hasConceptScore W2761115346C165082838 @default.
- W2761115346 hasConceptScore W2761115346C199104240 @default.
- W2761115346 hasConceptScore W2761115346C205649164 @default.
- W2761115346 hasConceptScore W2761115346C2779847632 @default.
- W2761115346 hasConceptScore W2761115346C39432304 @default.