Matches in SemOpenAlex for { <https://semopenalex.org/work/W2761140693> ?p ?o ?g. }
- W2761140693 abstract "Diffusion-weighted imaging (DWI)-based tractography has gained increasing popularity as a method for detailed visualization of white matter (WM) tracts. Different imaging techniques, and more novel, advanced imaging methods provide significant WM structural detail. While there has been greater focus on improving tract visualization for larger WM pathways, the relative value of each method for cranial nerve reconstruction and how this methodology can assist surgical decision-making is still understudied. Images from ten patients with posterior fossa tumors (4 male, mean age: 63.5), affecting either the trigeminal nerve (CN V) or the facial/vestibular complex (CN VII/VIII), were employed. Three distinct reconstruction methods (two tensor-based methods: single diffusion tensor tractography (SDT) (3D Slicer), eXtended streamline tractography (XST), and one fiber orientation distribution (FOD)-based method: streamline tractography using constrained spherical deconvolution(CSD)-derived estimates (MRtrix3), were compared to determine which of these was best suited for use in a neurosurgical setting in terms of processing speed, anatomical accuracy, and accurate depiction of the relationship between the tumor and affected CN. Computation of the tensor map was faster when compared to the implementation of constrained spherical deconvolution to provide estimates of fiber orientation distribution. Both XST and CSD-based reconstruction methods tended to give more detailed representations of the projections of CN V and CN VII/VIII compared to SDT. These reconstruction methods were able to more accurately delineate the course of CN V and CN VII/VIII, differentiate CN V from the cerebellar peduncle, and delineate compression of CN VII/VIII in situations where SDT could not. However, CSD-based reconstruction methods tended to generate more invalid streamlines. XST offers the best combination of anatomical accuracy and speed of reconstruction of cranial nerves within this patient population. Given the possible anatomical limitations of single tensor models, supplementation with more advanced tensor-based reconstruction methods might be beneficial." @default.
- W2761140693 created "2017-10-20" @default.
- W2761140693 creator A5010759658 @default.
- W2761140693 creator A5045955401 @default.
- W2761140693 creator A5050491205 @default.
- W2761140693 creator A5072049382 @default.
- W2761140693 creator A5072107495 @default.
- W2761140693 creator A5076810990 @default.
- W2761140693 date "2017-10-09" @default.
- W2761140693 modified "2023-10-14" @default.
- W2761140693 title "Comparison of Diffusion-Weighted MRI Reconstruction Methods for Visualization of Cranial Nerves in Posterior Fossa Surgery" @default.
- W2761140693 cites W1531771492 @default.
- W2761140693 cites W1556167233 @default.
- W2761140693 cites W1602210621 @default.
- W2761140693 cites W1739744888 @default.
- W2761140693 cites W1851493380 @default.
- W2761140693 cites W1964802316 @default.
- W2761140693 cites W1968179180 @default.
- W2761140693 cites W1978415409 @default.
- W2761140693 cites W1986269945 @default.
- W2761140693 cites W1989898464 @default.
- W2761140693 cites W2001611992 @default.
- W2761140693 cites W2004497549 @default.
- W2761140693 cites W2006835897 @default.
- W2761140693 cites W2026616100 @default.
- W2761140693 cites W2034252184 @default.
- W2761140693 cites W2036785860 @default.
- W2761140693 cites W2045407457 @default.
- W2761140693 cites W2046699283 @default.
- W2761140693 cites W2052644075 @default.
- W2761140693 cites W2070084561 @default.
- W2761140693 cites W2074888367 @default.
- W2761140693 cites W2074976309 @default.
- W2761140693 cites W2078088488 @default.
- W2761140693 cites W2080198834 @default.
- W2761140693 cites W2080551460 @default.
- W2761140693 cites W2082739415 @default.
- W2761140693 cites W2084113628 @default.
- W2761140693 cites W2094148161 @default.
- W2761140693 cites W2112372653 @default.
- W2761140693 cites W2117987496 @default.
- W2761140693 cites W2137679584 @default.
- W2761140693 cites W2140944029 @default.
- W2761140693 cites W2142900310 @default.
- W2761140693 cites W2145132952 @default.
- W2761140693 cites W2148873802 @default.
- W2761140693 cites W2149092213 @default.
- W2761140693 cites W2162123835 @default.
- W2761140693 cites W2170596158 @default.
- W2761140693 cites W2172006631 @default.
- W2761140693 cites W2238818133 @default.
- W2761140693 cites W2322772801 @default.
- W2761140693 cites W2397657821 @default.
- W2761140693 cites W2625448573 @default.
- W2761140693 cites W2977883299 @default.
- W2761140693 cites W4235770099 @default.
- W2761140693 doi "https://doi.org/10.3389/fnins.2017.00554" @default.
- W2761140693 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5640769" @default.
- W2761140693 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29062268" @default.
- W2761140693 hasPublicationYear "2017" @default.
- W2761140693 type Work @default.
- W2761140693 sameAs 2761140693 @default.
- W2761140693 citedByCount "27" @default.
- W2761140693 countsByYear W27611406932018 @default.
- W2761140693 countsByYear W27611406932019 @default.
- W2761140693 countsByYear W27611406932020 @default.
- W2761140693 countsByYear W27611406932021 @default.
- W2761140693 countsByYear W27611406932022 @default.
- W2761140693 countsByYear W27611406932023 @default.
- W2761140693 crossrefType "journal-article" @default.
- W2761140693 hasAuthorship W2761140693A5010759658 @default.
- W2761140693 hasAuthorship W2761140693A5045955401 @default.
- W2761140693 hasAuthorship W2761140693A5050491205 @default.
- W2761140693 hasAuthorship W2761140693A5072049382 @default.
- W2761140693 hasAuthorship W2761140693A5072107495 @default.
- W2761140693 hasAuthorship W2761140693A5076810990 @default.
- W2761140693 hasBestOaLocation W27611406931 @default.
- W2761140693 hasConcept C11413529 @default.
- W2761140693 hasConcept C126838900 @default.
- W2761140693 hasConcept C143409427 @default.
- W2761140693 hasConcept C149550507 @default.
- W2761140693 hasConcept C154945302 @default.
- W2761140693 hasConcept C174576160 @default.
- W2761140693 hasConcept C31972630 @default.
- W2761140693 hasConcept C36464697 @default.
- W2761140693 hasConcept C41008148 @default.
- W2761140693 hasConcept C71924100 @default.
- W2761140693 hasConcept C84787856 @default.
- W2761140693 hasConceptScore W2761140693C11413529 @default.
- W2761140693 hasConceptScore W2761140693C126838900 @default.
- W2761140693 hasConceptScore W2761140693C143409427 @default.
- W2761140693 hasConceptScore W2761140693C149550507 @default.
- W2761140693 hasConceptScore W2761140693C154945302 @default.
- W2761140693 hasConceptScore W2761140693C174576160 @default.
- W2761140693 hasConceptScore W2761140693C31972630 @default.
- W2761140693 hasConceptScore W2761140693C36464697 @default.
- W2761140693 hasConceptScore W2761140693C41008148 @default.
- W2761140693 hasConceptScore W2761140693C71924100 @default.
- W2761140693 hasConceptScore W2761140693C84787856 @default.
- W2761140693 hasLocation W27611406931 @default.