Matches in SemOpenAlex for { <https://semopenalex.org/work/W2761170027> ?p ?o ?g. }
- W2761170027 endingPage "412" @default.
- W2761170027 startingPage "402" @default.
- W2761170027 abstract "Scheduling is one of the important problems within the scope of control and management in grid and cloud-based systems. Data grid still as a primary solution to process data-intensive tasks, deals with managing large amounts of distributed data in multiple nodes. In this paper, a two-phase learning-based scheduling algorithm is proposed for data-intensive tasks scheduling in cluster-based data grids. In the proposed scheduling algorithm, a hierarchical multi agent system, consisting of one global broker agent and several local agents, is applied to scheduling procedure in the cluster-based data grids. At the first step of the proposed scheduling algorithm, the global broker agent selects the cluster with the minimum data cost based on the data communication cost measure, then an adaptive policy based on Q-learning is used by the local agent of the selected cluster to schedule the task to the proper node of the cluster. The impacts of three action selection strategies have been investigated in the proposed scheduling algorithm, and the performance of different versions of the scheduling algorithm regarding different action selection strategies, has been evaluated under three types of workloads with heterogeneous tasks. Experimental results show that for dynamic workloads with varying task submission patterns, the proposed learning-based scheduling algorithm gives better performance compared to four common scheduling algorithm, Queue Length (Shortest Queue), Access Cost, Queue Access Cost (QAC) and HCS, which use regular combinations of primary parameters such as, data communication cost and queue length. Applying a learning-based strategy provides the scheduling algorithm with more adaptability to the changing conditions in the environment." @default.
- W2761170027 created "2017-10-20" @default.
- W2761170027 creator A5032967106 @default.
- W2761170027 creator A5063443669 @default.
- W2761170027 date "2018-01-01" @default.
- W2761170027 modified "2023-10-16" @default.
- W2761170027 title "Makespan reduction for dynamic workloads in cluster-based data grids using reinforcement-learning based scheduling" @default.
- W2761170027 cites W142260494 @default.
- W2761170027 cites W1912474698 @default.
- W2761170027 cites W1964796204 @default.
- W2761170027 cites W1965218064 @default.
- W2761170027 cites W1968526517 @default.
- W2761170027 cites W1980314979 @default.
- W2761170027 cites W1982114871 @default.
- W2761170027 cites W1992198088 @default.
- W2761170027 cites W1996689181 @default.
- W2761170027 cites W1999371911 @default.
- W2761170027 cites W2000875519 @default.
- W2761170027 cites W2010526786 @default.
- W2761170027 cites W2014752266 @default.
- W2761170027 cites W2018333959 @default.
- W2761170027 cites W2018483011 @default.
- W2761170027 cites W2022901666 @default.
- W2761170027 cites W2025347579 @default.
- W2761170027 cites W2025397485 @default.
- W2761170027 cites W2056025439 @default.
- W2761170027 cites W2075666301 @default.
- W2761170027 cites W2078009415 @default.
- W2761170027 cites W2082574111 @default.
- W2761170027 cites W2102227769 @default.
- W2761170027 cites W2108687825 @default.
- W2761170027 cites W2346806992 @default.
- W2761170027 doi "https://doi.org/10.1016/j.jocs.2017.09.016" @default.
- W2761170027 hasPublicationYear "2018" @default.
- W2761170027 type Work @default.
- W2761170027 sameAs 2761170027 @default.
- W2761170027 citedByCount "15" @default.
- W2761170027 countsByYear W27611700272018 @default.
- W2761170027 countsByYear W27611700272020 @default.
- W2761170027 countsByYear W27611700272021 @default.
- W2761170027 countsByYear W27611700272022 @default.
- W2761170027 countsByYear W27611700272023 @default.
- W2761170027 crossrefType "journal-article" @default.
- W2761170027 hasAuthorship W2761170027A5032967106 @default.
- W2761170027 hasAuthorship W2761170027A5063443669 @default.
- W2761170027 hasConcept C107568181 @default.
- W2761170027 hasConcept C111919701 @default.
- W2761170027 hasConcept C112866106 @default.
- W2761170027 hasConcept C119948110 @default.
- W2761170027 hasConcept C120314980 @default.
- W2761170027 hasConcept C126255220 @default.
- W2761170027 hasConcept C127456818 @default.
- W2761170027 hasConcept C154945302 @default.
- W2761170027 hasConcept C160403385 @default.
- W2761170027 hasConcept C175893541 @default.
- W2761170027 hasConcept C206729178 @default.
- W2761170027 hasConcept C31258907 @default.
- W2761170027 hasConcept C31689143 @default.
- W2761170027 hasConcept C32310161 @default.
- W2761170027 hasConcept C33923547 @default.
- W2761170027 hasConcept C41008148 @default.
- W2761170027 hasConcept C55416958 @default.
- W2761170027 hasConcept C68387754 @default.
- W2761170027 hasConcept C79403827 @default.
- W2761170027 hasConcept C97541855 @default.
- W2761170027 hasConceptScore W2761170027C107568181 @default.
- W2761170027 hasConceptScore W2761170027C111919701 @default.
- W2761170027 hasConceptScore W2761170027C112866106 @default.
- W2761170027 hasConceptScore W2761170027C119948110 @default.
- W2761170027 hasConceptScore W2761170027C120314980 @default.
- W2761170027 hasConceptScore W2761170027C126255220 @default.
- W2761170027 hasConceptScore W2761170027C127456818 @default.
- W2761170027 hasConceptScore W2761170027C154945302 @default.
- W2761170027 hasConceptScore W2761170027C160403385 @default.
- W2761170027 hasConceptScore W2761170027C175893541 @default.
- W2761170027 hasConceptScore W2761170027C206729178 @default.
- W2761170027 hasConceptScore W2761170027C31258907 @default.
- W2761170027 hasConceptScore W2761170027C31689143 @default.
- W2761170027 hasConceptScore W2761170027C32310161 @default.
- W2761170027 hasConceptScore W2761170027C33923547 @default.
- W2761170027 hasConceptScore W2761170027C41008148 @default.
- W2761170027 hasConceptScore W2761170027C55416958 @default.
- W2761170027 hasConceptScore W2761170027C68387754 @default.
- W2761170027 hasConceptScore W2761170027C79403827 @default.
- W2761170027 hasConceptScore W2761170027C97541855 @default.
- W2761170027 hasLocation W27611700271 @default.
- W2761170027 hasOpenAccess W2761170027 @default.
- W2761170027 hasPrimaryLocation W27611700271 @default.
- W2761170027 hasRelatedWork W1007906405 @default.
- W2761170027 hasRelatedWork W1976129816 @default.
- W2761170027 hasRelatedWork W2025406980 @default.
- W2761170027 hasRelatedWork W2096052440 @default.
- W2761170027 hasRelatedWork W2167574351 @default.
- W2761170027 hasRelatedWork W2225350526 @default.
- W2761170027 hasRelatedWork W2351390697 @default.
- W2761170027 hasRelatedWork W3195954751 @default.
- W2761170027 hasRelatedWork W2184166483 @default.
- W2761170027 hasRelatedWork W2464565109 @default.