Matches in SemOpenAlex for { <https://semopenalex.org/work/W2761170445> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2761170445 abstract "Breathing is one of the human physiological activities that catch the interest of researchers especially in the area of medical diagnosis and human physiological performance. Apart from conventional measurement using intake or outflow of air, breathing characteristics could also be assessed through human respiratory muscles with the analysis on Electromyography (EMG) signal. In this paper, EMG signal of human breathing is acquired from four respiratory muscles i.e. sternocleidomastoid, scalene, intercostal muscle and diaphragm while subjects perform four different breathing tasks. The aim is to classify EMG features from the muscles into the four breathing tasks. Classification is done using Feedforward Multi-layer Perceptron Artificial Neural Network (MLPANN). Four features are derived from the EMG data i.e. root-mean-square (RMS), zero crossing (ZC), mean frequency (MNF) and mean frequency power (MP). Classification is performed to compare the accuracy result of input vector from the four features of EMG and three combination set of these features using i) four data segmentation frame sizes and ii) six number of hidden neurons. The result of data classification shows highest accuracy when all feature sets is used as input to MLPANN with segmentation frame size of 1000 ms and number of hidden neurons of 60. Classification accuracy obtained is 59.52%." @default.
- W2761170445 created "2017-10-20" @default.
- W2761170445 creator A5002703088 @default.
- W2761170445 creator A5010159401 @default.
- W2761170445 creator A5020248505 @default.
- W2761170445 creator A5025550558 @default.
- W2761170445 creator A5048199988 @default.
- W2761170445 creator A5063476803 @default.
- W2761170445 date "2017-03-01" @default.
- W2761170445 modified "2023-10-10" @default.
- W2761170445 title "Classification of human breathing task based on electromyography signal of respiratory muscles" @default.
- W2761170445 cites W1568232604 @default.
- W2761170445 cites W1964576512 @default.
- W2761170445 cites W2088205751 @default.
- W2761170445 cites W2090548782 @default.
- W2761170445 cites W2095715323 @default.
- W2761170445 cites W2101337260 @default.
- W2761170445 cites W2156914236 @default.
- W2761170445 cites W2160044184 @default.
- W2761170445 cites W2166234702 @default.
- W2761170445 cites W2168463183 @default.
- W2761170445 cites W2294955788 @default.
- W2761170445 doi "https://doi.org/10.1109/cspa.2017.8064950" @default.
- W2761170445 hasPublicationYear "2017" @default.
- W2761170445 type Work @default.
- W2761170445 sameAs 2761170445 @default.
- W2761170445 citedByCount "2" @default.
- W2761170445 countsByYear W27611704452017 @default.
- W2761170445 countsByYear W27611704452022 @default.
- W2761170445 crossrefType "proceedings-article" @default.
- W2761170445 hasAuthorship W2761170445A5002703088 @default.
- W2761170445 hasAuthorship W2761170445A5010159401 @default.
- W2761170445 hasAuthorship W2761170445A5020248505 @default.
- W2761170445 hasAuthorship W2761170445A5025550558 @default.
- W2761170445 hasAuthorship W2761170445A5048199988 @default.
- W2761170445 hasAuthorship W2761170445A5063476803 @default.
- W2761170445 hasConcept C105702510 @default.
- W2761170445 hasConcept C119599485 @default.
- W2761170445 hasConcept C127413603 @default.
- W2761170445 hasConcept C153180895 @default.
- W2761170445 hasConcept C154945302 @default.
- W2761170445 hasConcept C199360897 @default.
- W2761170445 hasConcept C2777515770 @default.
- W2761170445 hasConcept C2779843651 @default.
- W2761170445 hasConcept C28490314 @default.
- W2761170445 hasConcept C39300077 @default.
- W2761170445 hasConcept C41008148 @default.
- W2761170445 hasConcept C71907059 @default.
- W2761170445 hasConcept C71924100 @default.
- W2761170445 hasConcept C89600930 @default.
- W2761170445 hasConcept C99508421 @default.
- W2761170445 hasConceptScore W2761170445C105702510 @default.
- W2761170445 hasConceptScore W2761170445C119599485 @default.
- W2761170445 hasConceptScore W2761170445C127413603 @default.
- W2761170445 hasConceptScore W2761170445C153180895 @default.
- W2761170445 hasConceptScore W2761170445C154945302 @default.
- W2761170445 hasConceptScore W2761170445C199360897 @default.
- W2761170445 hasConceptScore W2761170445C2777515770 @default.
- W2761170445 hasConceptScore W2761170445C2779843651 @default.
- W2761170445 hasConceptScore W2761170445C28490314 @default.
- W2761170445 hasConceptScore W2761170445C39300077 @default.
- W2761170445 hasConceptScore W2761170445C41008148 @default.
- W2761170445 hasConceptScore W2761170445C71907059 @default.
- W2761170445 hasConceptScore W2761170445C71924100 @default.
- W2761170445 hasConceptScore W2761170445C89600930 @default.
- W2761170445 hasConceptScore W2761170445C99508421 @default.
- W2761170445 hasLocation W27611704451 @default.
- W2761170445 hasOpenAccess W2761170445 @default.
- W2761170445 hasPrimaryLocation W27611704451 @default.
- W2761170445 hasRelatedWork W1551437828 @default.
- W2761170445 hasRelatedWork W1992153410 @default.
- W2761170445 hasRelatedWork W2006061919 @default.
- W2761170445 hasRelatedWork W2141253262 @default.
- W2761170445 hasRelatedWork W2376139493 @default.
- W2761170445 hasRelatedWork W2386293158 @default.
- W2761170445 hasRelatedWork W2433638048 @default.
- W2761170445 hasRelatedWork W2998716555 @default.
- W2761170445 hasRelatedWork W3156756500 @default.
- W2761170445 hasRelatedWork W4282981700 @default.
- W2761170445 isParatext "false" @default.
- W2761170445 isRetracted "false" @default.
- W2761170445 magId "2761170445" @default.
- W2761170445 workType "article" @default.