Matches in SemOpenAlex for { <https://semopenalex.org/work/W2761434982> ?p ?o ?g. }
- W2761434982 abstract "Multimedia concept detection is a challenging topic due to the well-known class imbalance issue, where the data instances are distributed unevenly across different classes. This problem becomes even more prominent when the minority class that contains an extremely small proportion of the data represents the concept of interest as has occurred in many real-world applications such as frauds in banking transactions and goal events in soccer videos. Traditional data mining approaches often have difficulty handling largely skewed data distributions. To address this issue, in this paper, an importance-factor (IF)-based multiple correspondence analysis (MCA) framework is proposed to deal with the imbalanced datasets. Specifically, a hierarchical information gain analysis method, which is inspired by the decision tree algorithm, is presented for critical feature selection and IF assignment. Then, the derived IF is incorporated with the MCA algorithm for effective concept detection and retrieval. The comparison results in video concept detection using the disaster dataset and the soccer dataset demonstrate the effectiveness of the proposed framework." @default.
- W2761434982 created "2017-10-20" @default.
- W2761434982 creator A5012718640 @default.
- W2761434982 creator A5036221136 @default.
- W2761434982 creator A5048066942 @default.
- W2761434982 creator A5049219173 @default.
- W2761434982 creator A5056357562 @default.
- W2761434982 creator A5084955278 @default.
- W2761434982 date "2018-04-01" @default.
- W2761434982 modified "2023-09-26" @default.
- W2761434982 title "IF-MCA: Importance Factor-Based Multiple Correspondence Analysis for Multimedia Data Analytics" @default.
- W2761434982 cites W1504694836 @default.
- W2761434982 cites W1510192517 @default.
- W2761434982 cites W1560107318 @default.
- W2761434982 cites W1585743408 @default.
- W2761434982 cites W1602699467 @default.
- W2761434982 cites W170084132 @default.
- W2761434982 cites W1833977909 @default.
- W2761434982 cites W1839292360 @default.
- W2761434982 cites W1927170233 @default.
- W2761434982 cites W1965295228 @default.
- W2761434982 cites W1968809526 @default.
- W2761434982 cites W1996828489 @default.
- W2761434982 cites W2007206012 @default.
- W2761434982 cites W2049192244 @default.
- W2761434982 cites W2055271333 @default.
- W2761434982 cites W2061860233 @default.
- W2761434982 cites W2078897223 @default.
- W2761434982 cites W2080919181 @default.
- W2761434982 cites W2086865279 @default.
- W2761434982 cites W2091335542 @default.
- W2761434982 cites W2107618751 @default.
- W2761434982 cites W2120337034 @default.
- W2761434982 cites W2123363536 @default.
- W2761434982 cites W2125365101 @default.
- W2761434982 cites W2125950426 @default.
- W2761434982 cites W2140538566 @default.
- W2761434982 cites W2145541966 @default.
- W2761434982 cites W2146054288 @default.
- W2761434982 cites W2148661353 @default.
- W2761434982 cites W2153479931 @default.
- W2761434982 cites W2159128662 @default.
- W2761434982 cites W2162420234 @default.
- W2761434982 cites W2165232124 @default.
- W2761434982 cites W2312812155 @default.
- W2761434982 cites W2612039592 @default.
- W2761434982 cites W29711041 @default.
- W2761434982 doi "https://doi.org/10.1109/tmm.2017.2760623" @default.
- W2761434982 hasPublicationYear "2018" @default.
- W2761434982 type Work @default.
- W2761434982 sameAs 2761434982 @default.
- W2761434982 citedByCount "4" @default.
- W2761434982 countsByYear W27614349822018 @default.
- W2761434982 countsByYear W27614349822019 @default.
- W2761434982 crossrefType "journal-article" @default.
- W2761434982 hasAuthorship W2761434982A5012718640 @default.
- W2761434982 hasAuthorship W2761434982A5036221136 @default.
- W2761434982 hasAuthorship W2761434982A5048066942 @default.
- W2761434982 hasAuthorship W2761434982A5049219173 @default.
- W2761434982 hasAuthorship W2761434982A5056357562 @default.
- W2761434982 hasAuthorship W2761434982A5084955278 @default.
- W2761434982 hasConcept C119857082 @default.
- W2761434982 hasConcept C124101348 @default.
- W2761434982 hasConcept C148483581 @default.
- W2761434982 hasConcept C154945302 @default.
- W2761434982 hasConcept C199360897 @default.
- W2761434982 hasConcept C2777212361 @default.
- W2761434982 hasConcept C2781039887 @default.
- W2761434982 hasConcept C41008148 @default.
- W2761434982 hasConcept C79158427 @default.
- W2761434982 hasConcept C84525736 @default.
- W2761434982 hasConceptScore W2761434982C119857082 @default.
- W2761434982 hasConceptScore W2761434982C124101348 @default.
- W2761434982 hasConceptScore W2761434982C148483581 @default.
- W2761434982 hasConceptScore W2761434982C154945302 @default.
- W2761434982 hasConceptScore W2761434982C199360897 @default.
- W2761434982 hasConceptScore W2761434982C2777212361 @default.
- W2761434982 hasConceptScore W2761434982C2781039887 @default.
- W2761434982 hasConceptScore W2761434982C41008148 @default.
- W2761434982 hasConceptScore W2761434982C79158427 @default.
- W2761434982 hasConceptScore W2761434982C84525736 @default.
- W2761434982 hasLocation W27614349821 @default.
- W2761434982 hasOpenAccess W2761434982 @default.
- W2761434982 hasPrimaryLocation W27614349821 @default.
- W2761434982 hasRelatedWork W1473627731 @default.
- W2761434982 hasRelatedWork W1607949988 @default.
- W2761434982 hasRelatedWork W174066474 @default.
- W2761434982 hasRelatedWork W2077227089 @default.
- W2761434982 hasRelatedWork W2095688337 @default.
- W2761434982 hasRelatedWork W2098729027 @default.
- W2761434982 hasRelatedWork W2101342494 @default.
- W2761434982 hasRelatedWork W2107255621 @default.
- W2761434982 hasRelatedWork W2145511633 @default.
- W2761434982 hasRelatedWork W2160471445 @default.
- W2761434982 hasRelatedWork W2324334594 @default.
- W2761434982 hasRelatedWork W2396877263 @default.
- W2761434982 hasRelatedWork W2415023378 @default.
- W2761434982 hasRelatedWork W2584805731 @default.
- W2761434982 hasRelatedWork W2786333090 @default.
- W2761434982 hasRelatedWork W2903650147 @default.