Matches in SemOpenAlex for { <https://semopenalex.org/work/W2761508225> ?p ?o ?g. }
- W2761508225 endingPage "13" @default.
- W2761508225 startingPage "1" @default.
- W2761508225 abstract "Kernel sparse representation for classification (KSRC) has attracted much attention in pattern recognition community in recent years. Although it has been widely used in many applications such as face recognition, KSRC still has some open problems needed to be addressed. One is that if the training set is of a small scale, KSRC may potentially suffer from lack of training samples when a nonlinear mapping is used to transform the original input data into a high dimensional feature space, which is often accomplished using a kernel-based method. In order to address this problem, this work proposes a scheme that automatically yields a number of new training samples, termed virtual dictionary, from the original training set. We then use the yielded virtual dictionary and the original training set to build the KSRC model. To improve the computational efficiency of KSRC, we exploit the coordinate descend algorithm to solve the KSRC model. Our approach is referred to as kernel coordinate descent based on virtual dictionary (KCDVD). KCDVD is easy to implement and is computationally efficient. Experiments on many face databases show that the proposed algorithm is effective at remedying the problem with small training samples." @default.
- W2761508225 created "2017-10-20" @default.
- W2761508225 creator A5004034770 @default.
- W2761508225 creator A5012507645 @default.
- W2761508225 creator A5037290686 @default.
- W2761508225 creator A5051290981 @default.
- W2761508225 creator A5077334738 @default.
- W2761508225 date "2018-04-01" @default.
- W2761508225 modified "2023-10-17" @default.
- W2761508225 title "Virtual dictionary based kernel sparse representation for face recognition" @default.
- W2761508225 cites W1515954165 @default.
- W2761508225 cites W1964749215 @default.
- W2761508225 cites W1970052395 @default.
- W2761508225 cites W1971707173 @default.
- W2761508225 cites W1979920826 @default.
- W2761508225 cites W1984421104 @default.
- W2761508225 cites W1985655291 @default.
- W2761508225 cites W1990319151 @default.
- W2761508225 cites W1991359796 @default.
- W2761508225 cites W1993049083 @default.
- W2761508225 cites W1996452481 @default.
- W2761508225 cites W2007936136 @default.
- W2761508225 cites W2008340903 @default.
- W2761508225 cites W2022361862 @default.
- W2761508225 cites W2025183033 @default.
- W2761508225 cites W2054502547 @default.
- W2761508225 cites W2056201402 @default.
- W2761508225 cites W2060487848 @default.
- W2761508225 cites W2060584901 @default.
- W2761508225 cites W2088032561 @default.
- W2761508225 cites W2090504921 @default.
- W2761508225 cites W2097486709 @default.
- W2761508225 cites W2109885856 @default.
- W2761508225 cites W2120100419 @default.
- W2761508225 cites W2121647436 @default.
- W2761508225 cites W2129812935 @default.
- W2761508225 cites W2141607429 @default.
- W2761508225 cites W2142848040 @default.
- W2761508225 cites W2151543530 @default.
- W2761508225 cites W2159381505 @default.
- W2761508225 cites W2167403361 @default.
- W2761508225 cites W2217596628 @default.
- W2761508225 cites W2288403115 @default.
- W2761508225 cites W2322044574 @default.
- W2761508225 cites W2342709286 @default.
- W2761508225 cites W2510418053 @default.
- W2761508225 cites W2552163339 @default.
- W2761508225 cites W2963689635 @default.
- W2761508225 cites W3022380717 @default.
- W2761508225 cites W4294541781 @default.
- W2761508225 doi "https://doi.org/10.1016/j.patcog.2017.10.001" @default.
- W2761508225 hasPublicationYear "2018" @default.
- W2761508225 type Work @default.
- W2761508225 sameAs 2761508225 @default.
- W2761508225 citedByCount "40" @default.
- W2761508225 countsByYear W27615082252018 @default.
- W2761508225 countsByYear W27615082252019 @default.
- W2761508225 countsByYear W27615082252020 @default.
- W2761508225 countsByYear W27615082252021 @default.
- W2761508225 countsByYear W27615082252022 @default.
- W2761508225 countsByYear W27615082252023 @default.
- W2761508225 crossrefType "journal-article" @default.
- W2761508225 hasAuthorship W2761508225A5004034770 @default.
- W2761508225 hasAuthorship W2761508225A5012507645 @default.
- W2761508225 hasAuthorship W2761508225A5037290686 @default.
- W2761508225 hasAuthorship W2761508225A5051290981 @default.
- W2761508225 hasAuthorship W2761508225A5077334738 @default.
- W2761508225 hasConcept C114614502 @default.
- W2761508225 hasConcept C119857082 @default.
- W2761508225 hasConcept C122280245 @default.
- W2761508225 hasConcept C12267149 @default.
- W2761508225 hasConcept C124066611 @default.
- W2761508225 hasConcept C138885662 @default.
- W2761508225 hasConcept C144024400 @default.
- W2761508225 hasConcept C153180895 @default.
- W2761508225 hasConcept C154771677 @default.
- W2761508225 hasConcept C154945302 @default.
- W2761508225 hasConcept C157553263 @default.
- W2761508225 hasConcept C165696696 @default.
- W2761508225 hasConcept C177264268 @default.
- W2761508225 hasConcept C17744445 @default.
- W2761508225 hasConcept C199360897 @default.
- W2761508225 hasConcept C199539241 @default.
- W2761508225 hasConcept C2776359362 @default.
- W2761508225 hasConcept C2776401178 @default.
- W2761508225 hasConcept C2779304628 @default.
- W2761508225 hasConcept C31510193 @default.
- W2761508225 hasConcept C33923547 @default.
- W2761508225 hasConcept C36289849 @default.
- W2761508225 hasConcept C38652104 @default.
- W2761508225 hasConcept C41008148 @default.
- W2761508225 hasConcept C41895202 @default.
- W2761508225 hasConcept C74193536 @default.
- W2761508225 hasConcept C83665646 @default.
- W2761508225 hasConcept C94625758 @default.
- W2761508225 hasConceptScore W2761508225C114614502 @default.
- W2761508225 hasConceptScore W2761508225C119857082 @default.
- W2761508225 hasConceptScore W2761508225C122280245 @default.