Matches in SemOpenAlex for { <https://semopenalex.org/work/W2761545065> ?p ?o ?g. }
- W2761545065 endingPage "262" @default.
- W2761545065 startingPage "251" @default.
- W2761545065 abstract "Automatic segmentation of brain tissues and white matter hyperintensities of presumed vascular origin (WMH) in MRI of older patients is widely described in the literature. Although brain abnormalities and motion artefacts are common in this age group, most segmentation methods are not evaluated in a setting that includes these items. In the present study, our tissue segmentation method for brain MRI was extended and evaluated for additional WMH segmentation. Furthermore, our method was evaluated in two large cohorts with a realistic variation in brain abnormalities and motion artefacts. The method uses a multi-scale convolutional neural network with a T1-weighted image, a T2-weighted fluid attenuated inversion recovery (FLAIR) image and a T1-weighted inversion recovery (IR) image as input. The method automatically segments white matter (WM), cortical grey matter (cGM), basal ganglia and thalami (BGT), cerebellum (CB), brain stem (BS), lateral ventricular cerebrospinal fluid (lvCSF), peripheral cerebrospinal fluid (pCSF), and WMH. Our method was evaluated quantitatively with images publicly available from the MRBrainS13 challenge (n = 20), quantitatively and qualitatively in relatively healthy older subjects (n = 96), and qualitatively in patients from a memory clinic (n = 110). The method can accurately segment WMH (Overall Dice coefficient in the MRBrainS13 data of 0.67) without compromising performance for tissue segmentations (Overall Dice coefficients in the MRBrainS13 data of 0.87 for WM, 0.85 for cGM, 0.82 for BGT, 0.93 for CB, 0.92 for BS, 0.93 for lvCSF, 0.76 for pCSF). Furthermore, the automatic WMH volumes showed a high correlation with manual WMH volumes (Spearman's ρ = 0.83 for relatively healthy older subjects). In both cohorts, our method produced reliable segmentations (as determined by a human observer) in most images (relatively healthy/memory clinic: tissues 88%/77% reliable, WMH 85%/84% reliable) despite various degrees of brain abnormalities and motion artefacts. In conclusion, this study shows that a convolutional neural network-based segmentation method can accurately segment brain tissues and WMH in MR images of older patients with varying degrees of brain abnormalities and motion artefacts." @default.
- W2761545065 created "2017-10-20" @default.
- W2761545065 creator A5015319043 @default.
- W2761545065 creator A5028587177 @default.
- W2761545065 creator A5032906526 @default.
- W2761545065 creator A5057583165 @default.
- W2761545065 creator A5063490873 @default.
- W2761545065 creator A5078692612 @default.
- W2761545065 creator A5084070018 @default.
- W2761545065 date "2018-01-01" @default.
- W2761545065 modified "2023-10-13" @default.
- W2761545065 title "Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI" @default.
- W2761545065 cites W1884191083 @default.
- W2761545065 cites W1967419400 @default.
- W2761545065 cites W1974034298 @default.
- W2761545065 cites W1995064441 @default.
- W2761545065 cites W1999327911 @default.
- W2761545065 cites W2018017287 @default.
- W2761545065 cites W2049791419 @default.
- W2761545065 cites W2063948766 @default.
- W2761545065 cites W2064546327 @default.
- W2761545065 cites W2079222945 @default.
- W2761545065 cites W2080825898 @default.
- W2761545065 cites W2082526668 @default.
- W2761545065 cites W2085909714 @default.
- W2761545065 cites W2091753181 @default.
- W2761545065 cites W2102653483 @default.
- W2761545065 cites W2102848905 @default.
- W2761545065 cites W2108150542 @default.
- W2761545065 cites W2133287637 @default.
- W2761545065 cites W2134809220 @default.
- W2761545065 cites W2147945386 @default.
- W2761545065 cites W2153022901 @default.
- W2761545065 cites W2158742097 @default.
- W2761545065 cites W2160804681 @default.
- W2761545065 cites W2164841498 @default.
- W2761545065 cites W2168399612 @default.
- W2761545065 cites W2301358467 @default.
- W2761545065 cites W2310992461 @default.
- W2761545065 cites W2342591535 @default.
- W2761545065 cites W2532750509 @default.
- W2761545065 cites W2544598231 @default.
- W2761545065 cites W2547368168 @default.
- W2761545065 cites W2589409328 @default.
- W2761545065 cites W266124145 @default.
- W2761545065 cites W3104085283 @default.
- W2761545065 cites W3104258355 @default.
- W2761545065 cites W4230920194 @default.
- W2761545065 cites W4232960070 @default.
- W2761545065 cites W989828740 @default.
- W2761545065 doi "https://doi.org/10.1016/j.nicl.2017.10.007" @default.
- W2761545065 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5683197" @default.
- W2761545065 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29159042" @default.
- W2761545065 hasPublicationYear "2018" @default.
- W2761545065 type Work @default.
- W2761545065 sameAs 2761545065 @default.
- W2761545065 citedByCount "83" @default.
- W2761545065 countsByYear W27615450652018 @default.
- W2761545065 countsByYear W27615450652019 @default.
- W2761545065 countsByYear W27615450652020 @default.
- W2761545065 countsByYear W27615450652021 @default.
- W2761545065 countsByYear W27615450652022 @default.
- W2761545065 countsByYear W27615450652023 @default.
- W2761545065 crossrefType "journal-article" @default.
- W2761545065 hasAuthorship W2761545065A5015319043 @default.
- W2761545065 hasAuthorship W2761545065A5028587177 @default.
- W2761545065 hasAuthorship W2761545065A5032906526 @default.
- W2761545065 hasAuthorship W2761545065A5057583165 @default.
- W2761545065 hasAuthorship W2761545065A5063490873 @default.
- W2761545065 hasAuthorship W2761545065A5078692612 @default.
- W2761545065 hasAuthorship W2761545065A5084070018 @default.
- W2761545065 hasBestOaLocation W27615450651 @default.
- W2761545065 hasConcept C101070640 @default.
- W2761545065 hasConcept C105702510 @default.
- W2761545065 hasConcept C124504099 @default.
- W2761545065 hasConcept C126838900 @default.
- W2761545065 hasConcept C142724271 @default.
- W2761545065 hasConcept C143409427 @default.
- W2761545065 hasConcept C146638467 @default.
- W2761545065 hasConcept C154945302 @default.
- W2761545065 hasConcept C163892561 @default.
- W2761545065 hasConcept C2779651940 @default.
- W2761545065 hasConcept C2781192897 @default.
- W2761545065 hasConcept C2989005 @default.
- W2761545065 hasConcept C41008148 @default.
- W2761545065 hasConcept C71924100 @default.
- W2761545065 hasConcept C89600930 @default.
- W2761545065 hasConceptScore W2761545065C101070640 @default.
- W2761545065 hasConceptScore W2761545065C105702510 @default.
- W2761545065 hasConceptScore W2761545065C124504099 @default.
- W2761545065 hasConceptScore W2761545065C126838900 @default.
- W2761545065 hasConceptScore W2761545065C142724271 @default.
- W2761545065 hasConceptScore W2761545065C143409427 @default.
- W2761545065 hasConceptScore W2761545065C146638467 @default.
- W2761545065 hasConceptScore W2761545065C154945302 @default.
- W2761545065 hasConceptScore W2761545065C163892561 @default.
- W2761545065 hasConceptScore W2761545065C2779651940 @default.
- W2761545065 hasConceptScore W2761545065C2781192897 @default.