Matches in SemOpenAlex for { <https://semopenalex.org/work/W2761573649> ?p ?o ?g. }
- W2761573649 endingPage "368" @default.
- W2761573649 startingPage "347" @default.
- W2761573649 abstract "In this study, the authors endeavored to develop an effective framework for improving local urban air quality on meso-micro scales in cities in China that are experiencing rapid urbanization. Within this framework, the integrated Weather Research and Forecasting (WRF)/CALPUFF modeling system was applied to simulate the concentration distributions of typical pollutants (particulate matter with an aerodynamic diameter <10 μm [PM10], sulfur dioxide [SO2], and nitrogen oxides [NOx]) in the urban area of Benxi. Statistical analyses were performed to verify the credibility of this simulation, including the meteorological fields and concentration fields. The sources were then categorized using two different classification methods (the district-based and type-based methods), and the contributions to the pollutant concentrations from each source category were computed to provide a basis for appropriate control measures. The statistical indexes showed that CALMET had sufficient ability to predict the meteorological conditions, such as the wind fields and temperatures, which provided meteorological data for the subsequent CALPUFF run. The simulated concentrations from CALPUFF showed considerable agreement with the observed values but were generally underestimated. The spatial-temporal concentration pattern revealed that the maximum concentrations tended to appear in the urban centers and during the winter. In terms of their contributions to pollutant concentrations, the districts of Xihu, Pingshan, and Mingshan all affected the urban air quality to different degrees. According to the type-based classification, which categorized the pollution sources as belonging to the Bengang Group, large point sources, small point sources, and area sources, the source apportionment showed that the Bengang Group, the large point sources, and the area sources had considerable impacts on urban air quality. Finally, combined with the industrial characteristics, detailed control measures were proposed with which local policy makers could improve the urban air quality in Benxi. In summary, the results of this study showed that this framework has credibility for effectively improving urban air quality, based on the source apportionment of atmospheric pollutants.The authors endeavored to build up an effective framework based on the integrated WRF/CALPUFF to improve the air quality in many cities on meso-micro scales in China. Via this framework, the integrated modeling tool is accurately used to study the characteristics of meteorological fields, concentration fields, and source apportionments of pollutants in target area. The impacts of classified sources on air quality together with the industrial characteristics can provide more effective control measures for improving air quality. Through the case study, the technical framework developed in this study, particularly the source apportionment, could provide important data and technical support for policy makers to assess air pollution on the scale of a city in China or even the world." @default.
- W2761573649 created "2017-10-20" @default.
- W2761573649 creator A5025385231 @default.
- W2761573649 creator A5046898019 @default.
- W2761573649 creator A5061653097 @default.
- W2761573649 creator A5086664284 @default.
- W2761573649 date "2018-04-03" @default.
- W2761573649 modified "2023-10-01" @default.
- W2761573649 title "Application of an integrated Weather Research and Forecasting (WRF)/CALPUFF modeling tool for source apportionment of atmospheric pollutants for air quality management: A case study in the urban area of Benxi, China" @default.
- W2761573649 cites W1526661693 @default.
- W2761573649 cites W1806249600 @default.
- W2761573649 cites W1970291820 @default.
- W2761573649 cites W1975705108 @default.
- W2761573649 cites W1976129559 @default.
- W2761573649 cites W1977994802 @default.
- W2761573649 cites W1987012590 @default.
- W2761573649 cites W1996702027 @default.
- W2761573649 cites W2003593722 @default.
- W2761573649 cites W2008389501 @default.
- W2761573649 cites W2010732673 @default.
- W2761573649 cites W2015237995 @default.
- W2761573649 cites W2020962513 @default.
- W2761573649 cites W2021522384 @default.
- W2761573649 cites W2021575686 @default.
- W2761573649 cites W2028216426 @default.
- W2761573649 cites W2037005469 @default.
- W2761573649 cites W2042978279 @default.
- W2761573649 cites W2043444153 @default.
- W2761573649 cites W2046182010 @default.
- W2761573649 cites W2054252161 @default.
- W2761573649 cites W2058821874 @default.
- W2761573649 cites W2063239289 @default.
- W2761573649 cites W2065863897 @default.
- W2761573649 cites W2068922370 @default.
- W2761573649 cites W2069098884 @default.
- W2761573649 cites W2070261558 @default.
- W2761573649 cites W2070533532 @default.
- W2761573649 cites W2074355517 @default.
- W2761573649 cites W2076000180 @default.
- W2761573649 cites W2078869657 @default.
- W2761573649 cites W2080290123 @default.
- W2761573649 cites W2081033440 @default.
- W2761573649 cites W2082717159 @default.
- W2761573649 cites W2083339292 @default.
- W2761573649 cites W2084193619 @default.
- W2761573649 cites W2085304444 @default.
- W2761573649 cites W2087209347 @default.
- W2761573649 cites W2089771677 @default.
- W2761573649 cites W2091069827 @default.
- W2761573649 cites W2093086913 @default.
- W2761573649 cites W2094131196 @default.
- W2761573649 cites W2094239497 @default.
- W2761573649 cites W2105555177 @default.
- W2761573649 cites W2109838523 @default.
- W2761573649 cites W2110675116 @default.
- W2761573649 cites W2120483770 @default.
- W2761573649 cites W2128225313 @default.
- W2761573649 cites W2128447931 @default.
- W2761573649 cites W2145117680 @default.
- W2761573649 cites W2145755701 @default.
- W2761573649 cites W2179912439 @default.
- W2761573649 cites W2193856847 @default.
- W2761573649 cites W2321114808 @default.
- W2761573649 cites W2334106767 @default.
- W2761573649 cites W2994372549 @default.
- W2761573649 cites W53688207 @default.
- W2761573649 doi "https://doi.org/10.1080/10962247.2017.1391009" @default.
- W2761573649 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29020513" @default.
- W2761573649 hasPublicationYear "2018" @default.
- W2761573649 type Work @default.
- W2761573649 sameAs 2761573649 @default.
- W2761573649 citedByCount "17" @default.
- W2761573649 countsByYear W27615736492019 @default.
- W2761573649 countsByYear W27615736492020 @default.
- W2761573649 countsByYear W27615736492021 @default.
- W2761573649 countsByYear W27615736492022 @default.
- W2761573649 countsByYear W27615736492023 @default.
- W2761573649 crossrefType "journal-article" @default.
- W2761573649 hasAuthorship W2761573649A5025385231 @default.
- W2761573649 hasAuthorship W2761573649A5046898019 @default.
- W2761573649 hasAuthorship W2761573649A5061653097 @default.
- W2761573649 hasAuthorship W2761573649A5086664284 @default.
- W2761573649 hasBestOaLocation W27615736491 @default.
- W2761573649 hasConcept C126314574 @default.
- W2761573649 hasConcept C127313418 @default.
- W2761573649 hasConcept C133204551 @default.
- W2761573649 hasConcept C153294291 @default.
- W2761573649 hasConcept C161067210 @default.
- W2761573649 hasConcept C17744445 @default.
- W2761573649 hasConcept C178790620 @default.
- W2761573649 hasConcept C185592680 @default.
- W2761573649 hasConcept C18903297 @default.
- W2761573649 hasConcept C199539241 @default.
- W2761573649 hasConcept C205649164 @default.
- W2761573649 hasConcept C24245907 @default.
- W2761573649 hasConcept C2776720842 @default.
- W2761573649 hasConcept C2778337684 @default.
- W2761573649 hasConcept C39432304 @default.