Matches in SemOpenAlex for { <https://semopenalex.org/work/W2761663138> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2761663138 abstract "Abstract The rich information contained in permanent downhole gauge (PDG) data has drawn attention from researchers. Previous work has demonstrated feature-based machine learning to be promising for PDG data analysis. The recent rise of deep learning was powered by techniques including recurrent neural networks (RNNs), which have been shown useful for processing sequential information. In this work, we explored how RNN can be utilized to analyze PDG data for better reservoir characterization and modeling, by examining two specific RNN structures: nonlinear autoregressive exogenous model (NARX) and standard RNN. RNN is a special type of artificial neural network designed for sequential data processing. Unlike a nonrecurrent neural network, the hidden layers in RNN take memories of previous computations (e.g. hidden layers or outputs computed in previous time) into account. In that way, the information contained in the measurements prior to a certain time can be used to model the response at that time, i.e. the convolutional effects are modeled by the recurrent structure of the RNN. Another favorable property of RNN is that it requires no assumptions on physics in advance. Both the inputs and outputs come directly from the raw measurements, and no handcrafted features need to be extracted from the forward physics model. Compared with feature-based machine learning, RNN is more powerful for the modeling where the forward model has not been determined. In this work, RNN was first tested on a series of synthetic and real flow rate-pressure datasets. The patterns learned by RNN from those data helped correctly identify the reservoir model and forecast the reservoir performance. RNN was also applied on temperature transient data, to demonstrate its advantage over feature-based machine learning with no assumptions on the physics model. The study also showed that RNN has the noise tolerance and computational efficiency that make it a promising candidate to analyze PDG data in practice." @default.
- W2761663138 created "2017-10-20" @default.
- W2761663138 creator A5053482507 @default.
- W2761663138 creator A5069908713 @default.
- W2761663138 date "2017-10-09" @default.
- W2761663138 modified "2023-09-24" @default.
- W2761663138 title "Recurrent Neural Networks for Permanent Downhole Gauge Data Analysis" @default.
- W2761663138 cites W1964430340 @default.
- W2761663138 cites W1967125730 @default.
- W2761663138 cites W1985552702 @default.
- W2761663138 cites W2006806743 @default.
- W2761663138 cites W2016103205 @default.
- W2761663138 cites W2024854881 @default.
- W2761663138 cites W2071160585 @default.
- W2761663138 cites W2071547780 @default.
- W2761663138 cites W2156886112 @default.
- W2761663138 cites W2171800554 @default.
- W2761663138 cites W2298497999 @default.
- W2761663138 cites W2343348914 @default.
- W2761663138 cites W2504085492 @default.
- W2761663138 cites W2507906825 @default.
- W2761663138 cites W2508163625 @default.
- W2761663138 cites W4237579461 @default.
- W2761663138 doi "https://doi.org/10.2118/187181-ms" @default.
- W2761663138 hasPublicationYear "2017" @default.
- W2761663138 type Work @default.
- W2761663138 sameAs 2761663138 @default.
- W2761663138 citedByCount "24" @default.
- W2761663138 countsByYear W27616631382019 @default.
- W2761663138 countsByYear W27616631382020 @default.
- W2761663138 countsByYear W27616631382021 @default.
- W2761663138 countsByYear W27616631382022 @default.
- W2761663138 countsByYear W27616631382023 @default.
- W2761663138 crossrefType "proceedings-article" @default.
- W2761663138 hasAuthorship W2761663138A5053482507 @default.
- W2761663138 hasAuthorship W2761663138A5069908713 @default.
- W2761663138 hasConcept C108583219 @default.
- W2761663138 hasConcept C119857082 @default.
- W2761663138 hasConcept C138885662 @default.
- W2761663138 hasConcept C147168706 @default.
- W2761663138 hasConcept C149782125 @default.
- W2761663138 hasConcept C153180895 @default.
- W2761663138 hasConcept C154945302 @default.
- W2761663138 hasConcept C159877910 @default.
- W2761663138 hasConcept C2776401178 @default.
- W2761663138 hasConcept C33923547 @default.
- W2761663138 hasConcept C41008148 @default.
- W2761663138 hasConcept C41895202 @default.
- W2761663138 hasConcept C42536954 @default.
- W2761663138 hasConcept C50644808 @default.
- W2761663138 hasConcept C81363708 @default.
- W2761663138 hasConceptScore W2761663138C108583219 @default.
- W2761663138 hasConceptScore W2761663138C119857082 @default.
- W2761663138 hasConceptScore W2761663138C138885662 @default.
- W2761663138 hasConceptScore W2761663138C147168706 @default.
- W2761663138 hasConceptScore W2761663138C149782125 @default.
- W2761663138 hasConceptScore W2761663138C153180895 @default.
- W2761663138 hasConceptScore W2761663138C154945302 @default.
- W2761663138 hasConceptScore W2761663138C159877910 @default.
- W2761663138 hasConceptScore W2761663138C2776401178 @default.
- W2761663138 hasConceptScore W2761663138C33923547 @default.
- W2761663138 hasConceptScore W2761663138C41008148 @default.
- W2761663138 hasConceptScore W2761663138C41895202 @default.
- W2761663138 hasConceptScore W2761663138C42536954 @default.
- W2761663138 hasConceptScore W2761663138C50644808 @default.
- W2761663138 hasConceptScore W2761663138C81363708 @default.
- W2761663138 hasLocation W27616631381 @default.
- W2761663138 hasOpenAccess W2761663138 @default.
- W2761663138 hasPrimaryLocation W27616631381 @default.
- W2761663138 hasRelatedWork W2337926734 @default.
- W2761663138 hasRelatedWork W2732542196 @default.
- W2761663138 hasRelatedWork W2738221750 @default.
- W2761663138 hasRelatedWork W2760085659 @default.
- W2761663138 hasRelatedWork W3021430260 @default.
- W2761663138 hasRelatedWork W3136076031 @default.
- W2761663138 hasRelatedWork W3156786002 @default.
- W2761663138 hasRelatedWork W4311257506 @default.
- W2761663138 hasRelatedWork W4319994054 @default.
- W2761663138 hasRelatedWork W564581980 @default.
- W2761663138 isParatext "false" @default.
- W2761663138 isRetracted "false" @default.
- W2761663138 magId "2761663138" @default.
- W2761663138 workType "article" @default.