Matches in SemOpenAlex for { <https://semopenalex.org/work/W2761796652> ?p ?o ?g. }
- W2761796652 endingPage "190" @default.
- W2761796652 startingPage "178" @default.
- W2761796652 abstract "Cultivation priority planning is a very important and vital step in suitable and sustainable revenue of agricultural land. The growth of urban areas and industrial intensification has contributed to a reduction in valuable agricultural lands and to various environmental impacts including climate change. This reduction in agricultural land severely impacts food production and food security. In order to effectively address this issue, spatial analytical and optimization methods based on evaluating multiple criteria decision are needed to evaluate the capability and suitability of available lands for current and future food production. The objective of this study is to implement the GIS and multi-criteria decision analysis (MCDA) techniques as an improved method of multi-criteria decision making for evaluating areas suitable for cultivation priority planning of maize, rape and soybean crops. For this purpose, 12,000 ha land which is located in Ardabil province, west-north of Iran was investigated by excavation of 167 soil profiles and 313 augers. After soil sampling and analysis, soils were classified in Aridisols. 24 soil series and 66 land units were identified and separated in study area. The several criteria had limitation for maize, rape and soybean cultivation in studying lands which the most limiting evaluation criteria including soil depth, slope, climate, pH, electrical conductivity, exchangeable sodium percentage, calcium carbonate and gypsum were selected for usage in prioritization models by principal component analysis and multi-dimensional scaling methods. Selected criteria were very important in growth of maize, rape and soybean. Simple additive weighting (SAW), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Fuzzy TOPSIS methods were used for cultivation priority planning of maize, rape and soybean crops in land units. Analytical Hierarchy Process (AHP) and Fuzzy AHP approaches were used to determine weight values of the criteria. Multivariate variance analysis proves significant difference among three methods at 0.05 probability level. With attention to allocated scores by prioritization models, crops cultivation priority was determined as maize, rape and soybean in land units, respectively and maize crop was preferred to other plants. The statistical analysis results with regard to mean comparison derived from least significant difference (LSD) test showed that Fuzzy TOPSIS method set cultivation priority planning of maize, rape and soybean crops for land units more accurately than the others, due to fuzzy TOPSIS method used appropriate values of criteria weights, twin comparing nature of alternative (crop) from positive and negative ideal, data standardization, mathematical equations and matrixes as well as fuzzy logic relations and principles for calculation of process performing. This study emphasizes the successful application of MCDA in dealing with complicated issues in the context of cultivation priority planning management. It is anticipated that, the integration of this developed framework in the planning policies of cultivation priority in developing countries as an effective tool for integrated regional land use planning can help in conducting better control over soil, land and environment losses." @default.
- W2761796652 created "2017-10-20" @default.
- W2761796652 creator A5017199372 @default.
- W2761796652 creator A5026312208 @default.
- W2761796652 creator A5061323171 @default.
- W2761796652 creator A5073594865 @default.
- W2761796652 creator A5074673742 @default.
- W2761796652 date "2018-01-01" @default.
- W2761796652 modified "2023-10-16" @default.
- W2761796652 title "Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops" @default.
- W2761796652 cites W1157599955 @default.
- W2761796652 cites W1176839007 @default.
- W2761796652 cites W1965547616 @default.
- W2761796652 cites W1968632280 @default.
- W2761796652 cites W1971197063 @default.
- W2761796652 cites W1974205229 @default.
- W2761796652 cites W1975370868 @default.
- W2761796652 cites W1984896518 @default.
- W2761796652 cites W1985430464 @default.
- W2761796652 cites W1988550469 @default.
- W2761796652 cites W1994119659 @default.
- W2761796652 cites W1997772982 @default.
- W2761796652 cites W1998366350 @default.
- W2761796652 cites W2003299977 @default.
- W2761796652 cites W2005280825 @default.
- W2761796652 cites W2014026530 @default.
- W2761796652 cites W2019789579 @default.
- W2761796652 cites W2020853248 @default.
- W2761796652 cites W2024354018 @default.
- W2761796652 cites W2026587360 @default.
- W2761796652 cites W2029945928 @default.
- W2761796652 cites W2031268921 @default.
- W2761796652 cites W2034387309 @default.
- W2761796652 cites W2037940139 @default.
- W2761796652 cites W2039715157 @default.
- W2761796652 cites W2042102899 @default.
- W2761796652 cites W2046618082 @default.
- W2761796652 cites W2052982604 @default.
- W2761796652 cites W2053351734 @default.
- W2761796652 cites W2058696023 @default.
- W2761796652 cites W2064328476 @default.
- W2761796652 cites W2064926735 @default.
- W2761796652 cites W2076719588 @default.
- W2761796652 cites W2078701858 @default.
- W2761796652 cites W2078728013 @default.
- W2761796652 cites W2088555394 @default.
- W2761796652 cites W2101426794 @default.
- W2761796652 cites W2123699526 @default.
- W2761796652 cites W2129886664 @default.
- W2761796652 cites W2131364892 @default.
- W2761796652 cites W2136821145 @default.
- W2761796652 cites W2226266143 @default.
- W2761796652 cites W2267997859 @default.
- W2761796652 cites W2307452858 @default.
- W2761796652 cites W2332912335 @default.
- W2761796652 cites W2340309601 @default.
- W2761796652 cites W2346039776 @default.
- W2761796652 cites W2357724087 @default.
- W2761796652 cites W2477591619 @default.
- W2761796652 cites W301166711 @default.
- W2761796652 doi "https://doi.org/10.1016/j.geoderma.2017.09.012" @default.
- W2761796652 hasPublicationYear "2018" @default.
- W2761796652 type Work @default.
- W2761796652 sameAs 2761796652 @default.
- W2761796652 citedByCount "122" @default.
- W2761796652 countsByYear W27617966522018 @default.
- W2761796652 countsByYear W27617966522019 @default.
- W2761796652 countsByYear W27617966522020 @default.
- W2761796652 countsByYear W27617966522021 @default.
- W2761796652 countsByYear W27617966522022 @default.
- W2761796652 countsByYear W27617966522023 @default.
- W2761796652 crossrefType "journal-article" @default.
- W2761796652 hasAuthorship W2761796652A5017199372 @default.
- W2761796652 hasAuthorship W2761796652A5026312208 @default.
- W2761796652 hasAuthorship W2761796652A5061323171 @default.
- W2761796652 hasAuthorship W2761796652A5073594865 @default.
- W2761796652 hasAuthorship W2761796652A5074673742 @default.
- W2761796652 hasConcept C11105738 @default.
- W2761796652 hasConcept C118518473 @default.
- W2761796652 hasConcept C127413603 @default.
- W2761796652 hasConcept C147176958 @default.
- W2761796652 hasConcept C166957645 @default.
- W2761796652 hasConcept C205649164 @default.
- W2761796652 hasConcept C33923547 @default.
- W2761796652 hasConcept C39432304 @default.
- W2761796652 hasConcept C42475967 @default.
- W2761796652 hasConcept C4792198 @default.
- W2761796652 hasConcept C51566761 @default.
- W2761796652 hasConcept C88463610 @default.
- W2761796652 hasConceptScore W2761796652C11105738 @default.
- W2761796652 hasConceptScore W2761796652C118518473 @default.
- W2761796652 hasConceptScore W2761796652C127413603 @default.
- W2761796652 hasConceptScore W2761796652C147176958 @default.
- W2761796652 hasConceptScore W2761796652C166957645 @default.
- W2761796652 hasConceptScore W2761796652C205649164 @default.
- W2761796652 hasConceptScore W2761796652C33923547 @default.
- W2761796652 hasConceptScore W2761796652C39432304 @default.
- W2761796652 hasConceptScore W2761796652C42475967 @default.