Matches in SemOpenAlex for { <https://semopenalex.org/work/W2761922969> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2761922969 endingPage "166" @default.
- W2761922969 startingPage "149" @default.
- W2761922969 abstract "Rauscher method becomes the matter of interest because in combination with the method of nonlinear normal vibration modes it allows to calculate steady forced vibrations in the system with multiple degrees of freedom (DOF) via reduction in the number of DOFs. However, modern realizations of that approach have drawbacks such as iterative nature and the need to have initial approximation for the solution. The primary principle of Rauscher method is in obtaining periodic solutions of a non-autonomous system via studying some equivalent autonomous one. In the paper, a new non-iterative variant of Rauscher method is considered. In its current statement, the method can be used in analysis of forced harmonic oscillations in a nonlinear system with one degree of freedom. The primary goals of the study were to find out what kind of equivalent autonomous systems could be built for a given non-autonomous one and how they can be used for the construction of periodic solutions and/or periodic phase plane orbits of the initial system. It is shown that three different types of equivalent autonomous dynamical systems can be built for a given 1-DOF non-autonomous one. The system of 1st type is a fourth-order dynamical system. Technically it can be considered as a 2-DOF system where additional “DOF” is explicitly “responsible” for forced oscillations. The system of 2nd type is a third-order dynamical system. Its periodic orbits are exactly the same as in the initial system. Using the invariant manifold of the system of 1st type, the system of 2nd type can be reduced to the form $$W(x,x')=0$$ (which is called here the equivalent system of the 3rd type). It is important that the function $$W(x,x')$$ can be built a priori. Once $$W(x,x')$$ is found: (i) one can obtain different periodical orbits corresponding to forced oscillations in the initial system; (ii) one can estimate amplitudes of vibrations for these regimes; (iii) one can track bifurcations of periodical regimes of the initial system with respect to change in amplitude of external excitation f. As shown in the paper, periodical orbits of the initial non-autonomous system can be obtained via two different approaches: (i) as set of points on phase plane satisfying the condition $$W(x,x')=0$$ ; (ii) via the application of harmonic balance method to the equivalent system of 1st type using system’s energy level as a continuation parameter. This approach has advantage over application of harmonic balance method to initial system because the latter requires good initial guess for expansion coefficients, while the new approach does not and always starts from zero initial guess." @default.
- W2761922969 created "2017-10-20" @default.
- W2761922969 creator A5011810092 @default.
- W2761922969 date "2017-10-10" @default.
- W2761922969 modified "2023-10-03" @default.
- W2761922969 title "Non-iterative Rauscher method for 1-DOF system: a new approach to studying non-autonomous system via equivalent autonomous one" @default.
- W2761922969 cites W1560827512 @default.
- W2761922969 cites W1978103970 @default.
- W2761922969 cites W2001275283 @default.
- W2761922969 cites W2037758750 @default.
- W2761922969 cites W2049530574 @default.
- W2761922969 cites W2057225215 @default.
- W2761922969 cites W2063114644 @default.
- W2761922969 cites W2068217117 @default.
- W2761922969 cites W2094312257 @default.
- W2761922969 cites W2150647633 @default.
- W2761922969 cites W4235367449 @default.
- W2761922969 doi "https://doi.org/10.1007/s11071-017-3841-2" @default.
- W2761922969 hasPublicationYear "2017" @default.
- W2761922969 type Work @default.
- W2761922969 sameAs 2761922969 @default.
- W2761922969 citedByCount "0" @default.
- W2761922969 crossrefType "journal-article" @default.
- W2761922969 hasAuthorship W2761922969A5011810092 @default.
- W2761922969 hasBestOaLocation W27619229692 @default.
- W2761922969 hasConcept C127413603 @default.
- W2761922969 hasConcept C133731056 @default.
- W2761922969 hasConcept C154945302 @default.
- W2761922969 hasConcept C2775924081 @default.
- W2761922969 hasConcept C33923547 @default.
- W2761922969 hasConcept C41008148 @default.
- W2761922969 hasConcept C47446073 @default.
- W2761922969 hasConceptScore W2761922969C127413603 @default.
- W2761922969 hasConceptScore W2761922969C133731056 @default.
- W2761922969 hasConceptScore W2761922969C154945302 @default.
- W2761922969 hasConceptScore W2761922969C2775924081 @default.
- W2761922969 hasConceptScore W2761922969C33923547 @default.
- W2761922969 hasConceptScore W2761922969C41008148 @default.
- W2761922969 hasConceptScore W2761922969C47446073 @default.
- W2761922969 hasIssue "1" @default.
- W2761922969 hasLocation W27619229691 @default.
- W2761922969 hasLocation W27619229692 @default.
- W2761922969 hasLocation W27619229693 @default.
- W2761922969 hasOpenAccess W2761922969 @default.
- W2761922969 hasPrimaryLocation W27619229691 @default.
- W2761922969 hasRelatedWork W10877399 @default.
- W2761922969 hasRelatedWork W11354644 @default.
- W2761922969 hasRelatedWork W1850579 @default.
- W2761922969 hasRelatedWork W2179798 @default.
- W2761922969 hasRelatedWork W2800835 @default.
- W2761922969 hasRelatedWork W3084265 @default.
- W2761922969 hasRelatedWork W3717720 @default.
- W2761922969 hasRelatedWork W8389958 @default.
- W2761922969 hasRelatedWork W9079930 @default.
- W2761922969 hasRelatedWork W9569866 @default.
- W2761922969 hasVolume "93" @default.
- W2761922969 isParatext "false" @default.
- W2761922969 isRetracted "false" @default.
- W2761922969 magId "2761922969" @default.
- W2761922969 workType "article" @default.