Matches in SemOpenAlex for { <https://semopenalex.org/work/W2762022892> ?p ?o ?g. }
- W2762022892 abstract "Large wideband two-dimensional (2-D) arrays are essential for high-resolution three-dimensional (3-D) ultrasound imaging. Since the tremendous element number of a full sampled large 2-D array is not affordable in any practical 3-D ultrasound imaging system, it is necessary to reduce the element number through sparse 2-D array design. Sparse array design requires that both the positions and weights of the array elements should be arbitrarily alterable. Hence a proper evaluation tool that can deal with arbitrary array is integral to optimizing the array structure and apodization function. It is known that pulse-echo point spread function (PSF) has been a common tool used to evaluate the performance of wideband arrays in ultrasound imaging all along, which also plays an important role in wideband ultrasound simulations. However, so far the conventional ultrasound simulation tools can only calculate pulse-echo PSF of arbitrary wideband arrays in the time domain because of the existence of nonuniform nodes in the spatial impulse response expressions, which obstructs their application of FFT to do fast computation of the time-domain convolutions. As a result, ultra-high time consumption of pulse-echo PSF computation of a large arbitrary wideband array hampers it to be taken as the evaluation tool by any stochastic optimization methods which need massive iterations in designing large sparse 2-D arrays. This paper aims to make available the pulse-echo PSF tool in designing large sparse 2-D arrays by proposing a fast computation method of far-field pulse-echo PSFs of arbitrary wideband arrays. In the paper, fast computation of wideband spatial impulse responses of a 2-D array is first realized in frequency domain by employing the nonuniform fast Fourier transform (NUFFT), under the point source assumption in far-field. On the basis of that, fast computation of time-domain convolutions is made possible by using FFT. In addition, a short inverse FFT (IFFT) is applied in recovering the time-domain envelopes rather than the detailed waveforms of beam pulses to extract the pulse-echo PSF, which further accelerates the computation. Compared with the computation speed of the time domain method, i.e. Field II, the proposed method achieves an improvement of three orders of magnitude with comparable accuracy for a 100×100 wideband 2-D array. The proposed method makes it possible for applying stochastic optimization methods to design arbitrary large wideband 2-D arrays using pulse-echo PSF as the evaluation tool." @default.
- W2762022892 created "2017-10-20" @default.
- W2762022892 creator A5036291399 @default.
- W2762022892 creator A5090292044 @default.
- W2762022892 date "2018-03-01" @default.
- W2762022892 modified "2023-10-14" @default.
- W2762022892 title "Fast computation of far-field pulse-echo PSF of arbitrary arrays for large sparse 2-D ultrasound array design" @default.
- W2762022892 cites W135493896 @default.
- W2762022892 cites W1969318738 @default.
- W2762022892 cites W1974138698 @default.
- W2762022892 cites W1976590536 @default.
- W2762022892 cites W1977238206 @default.
- W2762022892 cites W1987548789 @default.
- W2762022892 cites W1988285441 @default.
- W2762022892 cites W1989075005 @default.
- W2762022892 cites W1992173819 @default.
- W2762022892 cites W1996065394 @default.
- W2762022892 cites W1998152471 @default.
- W2762022892 cites W2000771144 @default.
- W2762022892 cites W2002318142 @default.
- W2762022892 cites W2011416513 @default.
- W2762022892 cites W2027337646 @default.
- W2762022892 cites W2036993717 @default.
- W2762022892 cites W2037339702 @default.
- W2762022892 cites W2047488822 @default.
- W2762022892 cites W2063592120 @default.
- W2762022892 cites W2065455715 @default.
- W2762022892 cites W2065714747 @default.
- W2762022892 cites W2073767297 @default.
- W2762022892 cites W2081251245 @default.
- W2762022892 cites W2092260516 @default.
- W2762022892 cites W2099944953 @default.
- W2762022892 cites W2106279275 @default.
- W2762022892 cites W2112043466 @default.
- W2762022892 cites W2115777633 @default.
- W2762022892 cites W2117624847 @default.
- W2762022892 cites W2134579113 @default.
- W2762022892 cites W2137562317 @default.
- W2762022892 cites W2141559939 @default.
- W2762022892 cites W2144036540 @default.
- W2762022892 cites W2150554420 @default.
- W2762022892 cites W2150986751 @default.
- W2762022892 cites W2152968365 @default.
- W2762022892 cites W2153852861 @default.
- W2762022892 cites W2157672732 @default.
- W2762022892 cites W2162331353 @default.
- W2762022892 cites W2166343165 @default.
- W2762022892 cites W2168265940 @default.
- W2762022892 cites W2312487874 @default.
- W2762022892 cites W2317592571 @default.
- W2762022892 cites W2340148301 @default.
- W2762022892 cites W2409439508 @default.
- W2762022892 cites W3134459333 @default.
- W2762022892 cites W576506256 @default.
- W2762022892 doi "https://doi.org/10.1016/j.ultras.2017.10.006" @default.
- W2762022892 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29078097" @default.
- W2762022892 hasPublicationYear "2018" @default.
- W2762022892 type Work @default.
- W2762022892 sameAs 2762022892 @default.
- W2762022892 citedByCount "4" @default.
- W2762022892 countsByYear W27620228922018 @default.
- W2762022892 countsByYear W27620228922019 @default.
- W2762022892 countsByYear W27620228922021 @default.
- W2762022892 crossrefType "journal-article" @default.
- W2762022892 hasAuthorship W2762022892A5036291399 @default.
- W2762022892 hasAuthorship W2762022892A5090292044 @default.
- W2762022892 hasConcept C11413529 @default.
- W2762022892 hasConcept C120665830 @default.
- W2762022892 hasConcept C121332964 @default.
- W2762022892 hasConcept C136664719 @default.
- W2762022892 hasConcept C145177509 @default.
- W2762022892 hasConcept C154945302 @default.
- W2762022892 hasConcept C21822782 @default.
- W2762022892 hasConcept C24890656 @default.
- W2762022892 hasConcept C2779426996 @default.
- W2762022892 hasConcept C2780202535 @default.
- W2762022892 hasConcept C31258907 @default.
- W2762022892 hasConcept C41008148 @default.
- W2762022892 hasConcept C45374587 @default.
- W2762022892 hasConcept C51427946 @default.
- W2762022892 hasConcept C55494473 @default.
- W2762022892 hasConcept C62191587 @default.
- W2762022892 hasConcept C69179731 @default.
- W2762022892 hasConcept C76155785 @default.
- W2762022892 hasConceptScore W2762022892C11413529 @default.
- W2762022892 hasConceptScore W2762022892C120665830 @default.
- W2762022892 hasConceptScore W2762022892C121332964 @default.
- W2762022892 hasConceptScore W2762022892C136664719 @default.
- W2762022892 hasConceptScore W2762022892C145177509 @default.
- W2762022892 hasConceptScore W2762022892C154945302 @default.
- W2762022892 hasConceptScore W2762022892C21822782 @default.
- W2762022892 hasConceptScore W2762022892C24890656 @default.
- W2762022892 hasConceptScore W2762022892C2779426996 @default.
- W2762022892 hasConceptScore W2762022892C2780202535 @default.
- W2762022892 hasConceptScore W2762022892C31258907 @default.
- W2762022892 hasConceptScore W2762022892C41008148 @default.
- W2762022892 hasConceptScore W2762022892C45374587 @default.
- W2762022892 hasConceptScore W2762022892C51427946 @default.
- W2762022892 hasConceptScore W2762022892C55494473 @default.
- W2762022892 hasConceptScore W2762022892C62191587 @default.