Matches in SemOpenAlex for { <https://semopenalex.org/work/W2762028850> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2762028850 endingPage "944" @default.
- W2762028850 startingPage "931" @default.
- W2762028850 abstract "Logs are widely used in system management for dependability assurance because they are often the only data available that record detailed system runtime behaviors in production. Because the size of logs is constantly increasing, developers (and operators) intend to automate their analysis by applying data mining methods, therefore structured input data (e.g., matrices) are required. This triggers a number of studies on log parsing that aims to transform free-text log messages into structured events. However, due to the lack of open-source implementations of these log parsers and benchmarks for performance comparison, developers are unlikely to be aware of the effectiveness of existing log parsers and their limitations when applying them into practice. They must often reimplement or redesign one, which is time-consuming and redundant. In this paper, we first present a characterization study of the current state of the art log parsers and evaluate their efficacy on five real-world datasets with over ten million log messages. We determine that, although the overall accuracy of these parsers is high, they are not robust across all datasets. When logs grow to a large scale (e.g., 200 million log messages), which is common in practice, these parsers are not efficient enough to handle such data on a single computer. To address the above limitations, we design and implement a parallel log parser (namely POP) on top of Spark, a large-scale data processing platform. Comprehensive experiments have been conducted to evaluate POP on both synthetic and real-world datasets. The evaluation results demonstrate the capability of POP in terms of accuracy, efficiency, and effectiveness on subsequent log mining tasks." @default.
- W2762028850 created "2017-10-20" @default.
- W2762028850 creator A5032257283 @default.
- W2762028850 creator A5048669373 @default.
- W2762028850 creator A5069596903 @default.
- W2762028850 creator A5079365353 @default.
- W2762028850 creator A5085606261 @default.
- W2762028850 date "2018-11-01" @default.
- W2762028850 modified "2023-10-11" @default.
- W2762028850 title "Towards Automated Log Parsing for Large-Scale Log Data Analysis" @default.
- W2762028850 cites W108464071 @default.
- W2762028850 cites W1919179112 @default.
- W2762028850 cites W2028042531 @default.
- W2762028850 cites W2039157918 @default.
- W2762028850 cites W2040176884 @default.
- W2762028850 cites W2044300056 @default.
- W2762028850 cites W2063566496 @default.
- W2762028850 cites W2090139352 @default.
- W2762028850 cites W2102632804 @default.
- W2762028850 cites W2107263349 @default.
- W2762028850 cites W2108368547 @default.
- W2762028850 cites W2115056012 @default.
- W2762028850 cites W2115538520 @default.
- W2762028850 cites W2118931532 @default.
- W2762028850 cites W2142804492 @default.
- W2762028850 cites W2150990363 @default.
- W2762028850 cites W2153470728 @default.
- W2762028850 cites W2157578436 @default.
- W2762028850 cites W2170890990 @default.
- W2762028850 cites W2295582926 @default.
- W2762028850 cites W2479531384 @default.
- W2762028850 cites W2527994611 @default.
- W2762028850 cites W2536393303 @default.
- W2762028850 cites W2560021099 @default.
- W2762028850 cites W2585216812 @default.
- W2762028850 cites W3147048975 @default.
- W2762028850 cites W4213009331 @default.
- W2762028850 cites W4237335675 @default.
- W2762028850 cites W4246903272 @default.
- W2762028850 doi "https://doi.org/10.1109/tdsc.2017.2762673" @default.
- W2762028850 hasPublicationYear "2018" @default.
- W2762028850 type Work @default.
- W2762028850 sameAs 2762028850 @default.
- W2762028850 citedByCount "114" @default.
- W2762028850 countsByYear W27620288502018 @default.
- W2762028850 countsByYear W27620288502019 @default.
- W2762028850 countsByYear W27620288502020 @default.
- W2762028850 countsByYear W27620288502021 @default.
- W2762028850 countsByYear W27620288502022 @default.
- W2762028850 countsByYear W27620288502023 @default.
- W2762028850 crossrefType "journal-article" @default.
- W2762028850 hasAuthorship W2762028850A5032257283 @default.
- W2762028850 hasAuthorship W2762028850A5048669373 @default.
- W2762028850 hasAuthorship W2762028850A5069596903 @default.
- W2762028850 hasAuthorship W2762028850A5079365353 @default.
- W2762028850 hasAuthorship W2762028850A5085606261 @default.
- W2762028850 hasConcept C121332964 @default.
- W2762028850 hasConcept C124101348 @default.
- W2762028850 hasConcept C134306372 @default.
- W2762028850 hasConcept C154945302 @default.
- W2762028850 hasConcept C186644900 @default.
- W2762028850 hasConcept C195292467 @default.
- W2762028850 hasConcept C2778755073 @default.
- W2762028850 hasConcept C33923547 @default.
- W2762028850 hasConcept C41008148 @default.
- W2762028850 hasConcept C62520636 @default.
- W2762028850 hasConcept C63553672 @default.
- W2762028850 hasConceptScore W2762028850C121332964 @default.
- W2762028850 hasConceptScore W2762028850C124101348 @default.
- W2762028850 hasConceptScore W2762028850C134306372 @default.
- W2762028850 hasConceptScore W2762028850C154945302 @default.
- W2762028850 hasConceptScore W2762028850C186644900 @default.
- W2762028850 hasConceptScore W2762028850C195292467 @default.
- W2762028850 hasConceptScore W2762028850C2778755073 @default.
- W2762028850 hasConceptScore W2762028850C33923547 @default.
- W2762028850 hasConceptScore W2762028850C41008148 @default.
- W2762028850 hasConceptScore W2762028850C62520636 @default.
- W2762028850 hasConceptScore W2762028850C63553672 @default.
- W2762028850 hasFunder F4320321001 @default.
- W2762028850 hasIssue "6" @default.
- W2762028850 hasLocation W27620288501 @default.
- W2762028850 hasOpenAccess W2762028850 @default.
- W2762028850 hasPrimaryLocation W27620288501 @default.
- W2762028850 hasRelatedWork W1564661574 @default.
- W2762028850 hasRelatedWork W1840287803 @default.
- W2762028850 hasRelatedWork W1975821179 @default.
- W2762028850 hasRelatedWork W2020749411 @default.
- W2762028850 hasRelatedWork W2355975493 @default.
- W2762028850 hasRelatedWork W2364838364 @default.
- W2762028850 hasRelatedWork W2384808441 @default.
- W2762028850 hasRelatedWork W2502722637 @default.
- W2762028850 hasRelatedWork W2903680434 @default.
- W2762028850 hasRelatedWork W2594281132 @default.
- W2762028850 hasVolume "15" @default.
- W2762028850 isParatext "false" @default.
- W2762028850 isRetracted "false" @default.
- W2762028850 magId "2762028850" @default.
- W2762028850 workType "article" @default.