Matches in SemOpenAlex for { <https://semopenalex.org/work/W2762073054> ?p ?o ?g. }
- W2762073054 endingPage "e0186108" @default.
- W2762073054 startingPage "e0186108" @default.
- W2762073054 abstract "The crucial role of G-protein coupled receptors and the significant achievements associated with a better understanding of the spatial structure of known receptors in this family encouraged us to undertake a study on the histamine H3 receptor, whose crystal structure is still unresolved. The latest literature data and availability of different software enabled us to build homology models of higher accuracy than previously published ones. The new models are expected to be closer to crystal structures; and therefore, they are much more helpful in the design of potential ligands. In this article, we describe the generation of homology models with the use of diverse tools and a hybrid assessment. Our study incorporates a hybrid assessment connecting knowledge-based scoring algorithms with a two-step ligand-based docking procedure. Knowledge-based scoring employs probability theory for global energy minimum determination based on information about native amino acid conformation from a dataset of experimentally determined protein structures. For a two-step docking procedure two programs were applied: GOLD was used in the first step and Glide in the second. Hybrid approaches offer advantages by combining various theoretical methods in one modeling algorithm. The biggest advantage of hybrid methods is their intrinsic ability to self-update and self-refine when additional structural data are acquired. Moreover, the diversity of computational methods and structural data used in hybrid approaches for structure prediction limit inaccuracies resulting from theoretical approximations or fuzziness of experimental data. The results of docking to the new H3 receptor model allowed us to analyze ligand-receptor interactions for reference compounds." @default.
- W2762073054 created "2017-10-20" @default.
- W2762073054 creator A5031559351 @default.
- W2762073054 creator A5076818213 @default.
- W2762073054 creator A5079455118 @default.
- W2762073054 date "2017-10-05" @default.
- W2762073054 modified "2023-09-25" @default.
- W2762073054 title "Hybrid approach to structure modeling of the histamine H3 receptor: Multi-level assessment as a tool for model verification" @default.
- W2762073054 cites W1447565288 @default.
- W2762073054 cites W1557747539 @default.
- W2762073054 cites W1575100770 @default.
- W2762073054 cites W1664200544 @default.
- W2762073054 cites W1918796765 @default.
- W2762073054 cites W1919779618 @default.
- W2762073054 cites W1956663338 @default.
- W2762073054 cites W1964722535 @default.
- W2762073054 cites W1965304037 @default.
- W2762073054 cites W1972933336 @default.
- W2762073054 cites W1975001263 @default.
- W2762073054 cites W1977582643 @default.
- W2762073054 cites W1979561342 @default.
- W2762073054 cites W1982349407 @default.
- W2762073054 cites W1985588649 @default.
- W2762073054 cites W1987134040 @default.
- W2762073054 cites W1988816448 @default.
- W2762073054 cites W1991285104 @default.
- W2762073054 cites W1993068126 @default.
- W2762073054 cites W1998463685 @default.
- W2762073054 cites W1998568556 @default.
- W2762073054 cites W1999118725 @default.
- W2762073054 cites W1999591184 @default.
- W2762073054 cites W2000217206 @default.
- W2762073054 cites W2007117037 @default.
- W2762073054 cites W2008663019 @default.
- W2762073054 cites W2025092830 @default.
- W2762073054 cites W2025273956 @default.
- W2762073054 cites W2027662135 @default.
- W2762073054 cites W2038772855 @default.
- W2762073054 cites W2038945255 @default.
- W2762073054 cites W2039031830 @default.
- W2762073054 cites W2039478164 @default.
- W2762073054 cites W2048718061 @default.
- W2762073054 cites W2052030759 @default.
- W2762073054 cites W2054359061 @default.
- W2762073054 cites W2058627773 @default.
- W2762073054 cites W2058752690 @default.
- W2762073054 cites W2069067327 @default.
- W2762073054 cites W2077410129 @default.
- W2762073054 cites W2077476143 @default.
- W2762073054 cites W2077687762 @default.
- W2762073054 cites W2087771995 @default.
- W2762073054 cites W2094589918 @default.
- W2762073054 cites W2095641752 @default.
- W2762073054 cites W2102773142 @default.
- W2762073054 cites W2103908315 @default.
- W2762073054 cites W2105638686 @default.
- W2762073054 cites W2109254532 @default.
- W2762073054 cites W2123035658 @default.
- W2762073054 cites W2126443187 @default.
- W2762073054 cites W2127322768 @default.
- W2762073054 cites W2128263595 @default.
- W2762073054 cites W2130479394 @default.
- W2762073054 cites W2130581715 @default.
- W2762073054 cites W2135689740 @default.
- W2762073054 cites W2137797563 @default.
- W2762073054 cites W2144884045 @default.
- W2762073054 cites W2152187237 @default.
- W2762073054 cites W2152245709 @default.
- W2762073054 cites W2152301430 @default.
- W2762073054 cites W2156469184 @default.
- W2762073054 cites W2157558738 @default.
- W2762073054 cites W2169089690 @default.
- W2762073054 cites W2181539939 @default.
- W2762073054 cites W2299262334 @default.
- W2762073054 cites W2331889421 @default.
- W2762073054 cites W2341581118 @default.
- W2762073054 cites W2346012195 @default.
- W2762073054 cites W2351484114 @default.
- W2762073054 cites W2398461013 @default.
- W2762073054 cites W2509928882 @default.
- W2762073054 cites W2519021971 @default.
- W2762073054 cites W2586600839 @default.
- W2762073054 cites W2739999456 @default.
- W2762073054 cites W2883755802 @default.
- W2762073054 cites W4384492535 @default.
- W2762073054 cites W72465559 @default.
- W2762073054 cites W2407044849 @default.
- W2762073054 doi "https://doi.org/10.1371/journal.pone.0186108" @default.
- W2762073054 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5629032" @default.
- W2762073054 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28982153" @default.
- W2762073054 hasPublicationYear "2017" @default.
- W2762073054 type Work @default.
- W2762073054 sameAs 2762073054 @default.
- W2762073054 citedByCount "13" @default.
- W2762073054 countsByYear W27620730542018 @default.
- W2762073054 countsByYear W27620730542019 @default.
- W2762073054 countsByYear W27620730542021 @default.
- W2762073054 countsByYear W27620730542022 @default.