Matches in SemOpenAlex for { <https://semopenalex.org/work/W2762202421> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2762202421 abstract "In this paper, we introduce a new unsupervised classifier for Hyperspectral images (HSI) using image segmentation and spectral unmixing. In the proposed method, first the number of classes is considered equal to the number of endmembers. Second, the endmember matrix is defined. Third, the abundance fraction maps are extracted. Fourth, an initial groundtruth is constructed by choosing the location of maximum absolute value of abundance fractions corresponding to each pixel. Fifth, each pixel which has the same eight neighboring (vertical, horizontal and diagonal) class is a good candidate for training data and after that some of good candidate pixels are randomly selected as final training data and remaining pixels are considered as testing data. Finally, support vector machine is applied to the HSI and initial groundtruth is iteratively repeated. In order to validate the efficiency of the proposed algorithm, two real HSI datasets are used. The obtained classification results are compared with some of state-of-the-art initial algorithms and the classification accuracy of the proposed method is close to the supervised algorithms." @default.
- W2762202421 created "2017-10-20" @default.
- W2762202421 creator A5011201354 @default.
- W2762202421 creator A5046045649 @default.
- W2762202421 creator A5085793165 @default.
- W2762202421 date "2017-10-04" @default.
- W2762202421 modified "2023-09-23" @default.
- W2762202421 title "Classification of hyperspectral images using unsupervised support vector machine" @default.
- W2762202421 cites W1974774078 @default.
- W2762202421 cites W1995993925 @default.
- W2762202421 cites W1998030734 @default.
- W2762202421 cites W2011430131 @default.
- W2762202421 cites W2056621966 @default.
- W2762202421 cites W2070424424 @default.
- W2762202421 cites W2070781258 @default.
- W2762202421 cites W2072026719 @default.
- W2762202421 cites W2113753426 @default.
- W2762202421 cites W2157321686 @default.
- W2762202421 doi "https://doi.org/10.1117/12.2278058" @default.
- W2762202421 hasPublicationYear "2017" @default.
- W2762202421 type Work @default.
- W2762202421 sameAs 2762202421 @default.
- W2762202421 citedByCount "0" @default.
- W2762202421 crossrefType "proceedings-article" @default.
- W2762202421 hasAuthorship W2762202421A5011201354 @default.
- W2762202421 hasAuthorship W2762202421A5046045649 @default.
- W2762202421 hasAuthorship W2762202421A5085793165 @default.
- W2762202421 hasConcept C12267149 @default.
- W2762202421 hasConcept C130367717 @default.
- W2762202421 hasConcept C153180895 @default.
- W2762202421 hasConcept C154945302 @default.
- W2762202421 hasConcept C159078339 @default.
- W2762202421 hasConcept C160633673 @default.
- W2762202421 hasConcept C2524010 @default.
- W2762202421 hasConcept C33923547 @default.
- W2762202421 hasConcept C41008148 @default.
- W2762202421 hasConcept C58237817 @default.
- W2762202421 hasConcept C95623464 @default.
- W2762202421 hasConceptScore W2762202421C12267149 @default.
- W2762202421 hasConceptScore W2762202421C130367717 @default.
- W2762202421 hasConceptScore W2762202421C153180895 @default.
- W2762202421 hasConceptScore W2762202421C154945302 @default.
- W2762202421 hasConceptScore W2762202421C159078339 @default.
- W2762202421 hasConceptScore W2762202421C160633673 @default.
- W2762202421 hasConceptScore W2762202421C2524010 @default.
- W2762202421 hasConceptScore W2762202421C33923547 @default.
- W2762202421 hasConceptScore W2762202421C41008148 @default.
- W2762202421 hasConceptScore W2762202421C58237817 @default.
- W2762202421 hasConceptScore W2762202421C95623464 @default.
- W2762202421 hasLocation W27622024211 @default.
- W2762202421 hasOpenAccess W2762202421 @default.
- W2762202421 hasPrimaryLocation W27622024211 @default.
- W2762202421 hasRelatedWork W1970945970 @default.
- W2762202421 hasRelatedWork W2032434887 @default.
- W2762202421 hasRelatedWork W2049204965 @default.
- W2762202421 hasRelatedWork W2086867868 @default.
- W2762202421 hasRelatedWork W2105502667 @default.
- W2762202421 hasRelatedWork W2137059436 @default.
- W2762202421 hasRelatedWork W2221243399 @default.
- W2762202421 hasRelatedWork W2278286637 @default.
- W2762202421 hasRelatedWork W2408018050 @default.
- W2762202421 hasRelatedWork W2596914608 @default.
- W2762202421 hasRelatedWork W2793366490 @default.
- W2762202421 hasRelatedWork W2884759165 @default.
- W2762202421 hasRelatedWork W2945531555 @default.
- W2762202421 hasRelatedWork W2945768950 @default.
- W2762202421 hasRelatedWork W3161811368 @default.
- W2762202421 hasRelatedWork W3164802645 @default.
- W2762202421 hasRelatedWork W3189127903 @default.
- W2762202421 hasRelatedWork W3204998281 @default.
- W2762202421 hasRelatedWork W2842234917 @default.
- W2762202421 hasRelatedWork W3130206526 @default.
- W2762202421 isParatext "false" @default.
- W2762202421 isRetracted "false" @default.
- W2762202421 magId "2762202421" @default.
- W2762202421 workType "article" @default.