Matches in SemOpenAlex for { <https://semopenalex.org/work/W2762290718> ?p ?o ?g. }
- W2762290718 abstract "It is important to quantify the dose response for a drug in phase 2a clinical trials so the optimal doses can then be selected for subsequent late phase trials. In a phase 2a clinical trial of new lead drug being developed for the treatment of rheumatoid arthritis (RA), a U-shaped dose response curve was observed. In the light of this result further research was undertaken to design an efficient phase 2a proof of concept (PoC) trial for a follow-on compound using the lessons learnt from the lead compound.The planned analysis for the Phase 2a trial for GSK123456 was a Bayesian Emax model which assumes the dose-response relationship follows a monotonic sigmoid S shaped curve. This model was found to be suboptimal to model the U-shaped dose response observed in the data from this trial and alternatives approaches were needed to be considered for the next compound for which a Normal dynamic linear model (NDLM) is proposed. This paper compares the statistical properties of the Bayesian Emax model and NDLM model and both models are evaluated using simulation in the context of adaptive Phase 2a PoC design under a variety of assumed dose response curves: linear, Emax model, U-shaped model, and flat response.It is shown that the NDLM method is flexible and can handle a wide variety of dose-responses, including monotonic and non-monotonic relationships. In comparison to the NDLM model the Emax model excelled with higher probability of selecting ED90 and smaller average sample size, when the true dose response followed Emax like curve. In addition, the type I error, probability of incorrectly concluding a drug may work when it does not, is inflated with the Bayesian NDLM model in all scenarios which would represent a development risk to pharmaceutical company. The bias, which is the difference between the estimated effect from the Emax and NDLM models and the simulated value, is comparable if the true dose response follows a placebo like curve, an Emax like curve, or log linear shape curve under fixed dose allocation, no adaptive allocation, half adaptive and adaptive scenarios. The bias though is significantly increased for the Emax model if the true dose response follows a U-shaped curve.In most cases the Bayesian Emax model works effectively and efficiently, with low bias and good probability of success in case of monotonic dose response. However, if there is a belief that the dose response could be non-monotonic then the NDLM is the superior model to assess the dose response." @default.
- W2762290718 created "2017-10-20" @default.
- W2762290718 creator A5012315210 @default.
- W2762290718 creator A5040862124 @default.
- W2762290718 creator A5060470951 @default.
- W2762290718 date "2017-10-02" @default.
- W2762290718 modified "2023-10-12" @default.
- W2762290718 title "Design considerations and analysis planning of a phase 2a proof of concept study in rheumatoid arthritis in the presence of possible non-monotonicity" @default.
- W2762290718 cites W135921014 @default.
- W2762290718 cites W1566333899 @default.
- W2762290718 cites W1828001519 @default.
- W2762290718 cites W1926357153 @default.
- W2762290718 cites W1968779484 @default.
- W2762290718 cites W1990344145 @default.
- W2762290718 cites W1997362383 @default.
- W2762290718 cites W2005888273 @default.
- W2762290718 cites W2039941561 @default.
- W2762290718 cites W2080731122 @default.
- W2762290718 cites W2108278478 @default.
- W2762290718 cites W2114800482 @default.
- W2762290718 cites W2137209912 @default.
- W2762290718 cites W2143852811 @default.
- W2762290718 cites W2145545413 @default.
- W2762290718 cites W2159304905 @default.
- W2762290718 cites W2163478426 @default.
- W2762290718 cites W2280050921 @default.
- W2762290718 cites W2484370304 @default.
- W2762290718 cites W2491633544 @default.
- W2762290718 cites W3100144458 @default.
- W2762290718 cites W2095266646 @default.
- W2762290718 doi "https://doi.org/10.1186/s12874-017-0416-3" @default.
- W2762290718 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5625783" @default.
- W2762290718 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28969588" @default.
- W2762290718 hasPublicationYear "2017" @default.
- W2762290718 type Work @default.
- W2762290718 sameAs 2762290718 @default.
- W2762290718 citedByCount "7" @default.
- W2762290718 countsByYear W27622907182018 @default.
- W2762290718 countsByYear W27622907182019 @default.
- W2762290718 countsByYear W27622907182020 @default.
- W2762290718 countsByYear W27622907182022 @default.
- W2762290718 crossrefType "journal-article" @default.
- W2762290718 hasAuthorship W2762290718A5012315210 @default.
- W2762290718 hasAuthorship W2762290718A5040862124 @default.
- W2762290718 hasAuthorship W2762290718A5060470951 @default.
- W2762290718 hasBestOaLocation W27622907181 @default.
- W2762290718 hasConcept C105795698 @default.
- W2762290718 hasConcept C107673813 @default.
- W2762290718 hasConcept C126322002 @default.
- W2762290718 hasConcept C129848803 @default.
- W2762290718 hasConcept C134306372 @default.
- W2762290718 hasConcept C151730666 @default.
- W2762290718 hasConcept C163175372 @default.
- W2762290718 hasConcept C178790620 @default.
- W2762290718 hasConcept C185592680 @default.
- W2762290718 hasConcept C207201462 @default.
- W2762290718 hasConcept C2777575956 @default.
- W2762290718 hasConcept C2779343474 @default.
- W2762290718 hasConcept C33923547 @default.
- W2762290718 hasConcept C41008148 @default.
- W2762290718 hasConcept C44280652 @default.
- W2762290718 hasConcept C535046627 @default.
- W2762290718 hasConcept C71924100 @default.
- W2762290718 hasConcept C72169020 @default.
- W2762290718 hasConcept C86803240 @default.
- W2762290718 hasConceptScore W2762290718C105795698 @default.
- W2762290718 hasConceptScore W2762290718C107673813 @default.
- W2762290718 hasConceptScore W2762290718C126322002 @default.
- W2762290718 hasConceptScore W2762290718C129848803 @default.
- W2762290718 hasConceptScore W2762290718C134306372 @default.
- W2762290718 hasConceptScore W2762290718C151730666 @default.
- W2762290718 hasConceptScore W2762290718C163175372 @default.
- W2762290718 hasConceptScore W2762290718C178790620 @default.
- W2762290718 hasConceptScore W2762290718C185592680 @default.
- W2762290718 hasConceptScore W2762290718C207201462 @default.
- W2762290718 hasConceptScore W2762290718C2777575956 @default.
- W2762290718 hasConceptScore W2762290718C2779343474 @default.
- W2762290718 hasConceptScore W2762290718C33923547 @default.
- W2762290718 hasConceptScore W2762290718C41008148 @default.
- W2762290718 hasConceptScore W2762290718C44280652 @default.
- W2762290718 hasConceptScore W2762290718C535046627 @default.
- W2762290718 hasConceptScore W2762290718C71924100 @default.
- W2762290718 hasConceptScore W2762290718C72169020 @default.
- W2762290718 hasConceptScore W2762290718C86803240 @default.
- W2762290718 hasIssue "1" @default.
- W2762290718 hasLocation W27622907181 @default.
- W2762290718 hasLocation W27622907182 @default.
- W2762290718 hasLocation W27622907183 @default.
- W2762290718 hasLocation W27622907184 @default.
- W2762290718 hasLocation W27622907185 @default.
- W2762290718 hasOpenAccess W2762290718 @default.
- W2762290718 hasPrimaryLocation W27622907181 @default.
- W2762290718 hasRelatedWork W1637985398 @default.
- W2762290718 hasRelatedWork W2033200554 @default.
- W2762290718 hasRelatedWork W2050078602 @default.
- W2762290718 hasRelatedWork W2063447561 @default.
- W2762290718 hasRelatedWork W2107270097 @default.
- W2762290718 hasRelatedWork W2507458234 @default.
- W2762290718 hasRelatedWork W2762290718 @default.
- W2762290718 hasRelatedWork W3199773367 @default.