Matches in SemOpenAlex for { <https://semopenalex.org/work/W2762323924> ?p ?o ?g. }
- W2762323924 endingPage "155" @default.
- W2762323924 startingPage "143" @default.
- W2762323924 abstract "There is currently no standard or widely accepted subset of features to effectively classify different emotions based on electroencephalogram (EEG) signals. While combining all possible EEG features may improve the classification performance, it can lead to high dimensionality and worse performance due to redundancy and inefficiency. To solve the high-dimensionality problem, this paper proposes a new framework to automatically search for the optimal subset of EEG features using evolutionary computation (EC) algorithms. The proposed framework has been extensively evaluated using two public datasets (MAHNOB, DEAP) and a new dataset acquired with a mobile EEG sensor. The results confirm that EC algorithms can effectively support feature selection to identify the best EEG features and the best channels to maximize performance over a four-quadrant emotion classification problem. These findings are significant for informing future development of EEG-based emotion classification because low-cost mobile EEG sensors with fewer electrodes are becoming popular for many new applications." @default.
- W2762323924 created "2017-10-20" @default.
- W2762323924 creator A5001328179 @default.
- W2762323924 creator A5053074581 @default.
- W2762323924 creator A5063750580 @default.
- W2762323924 creator A5085514504 @default.
- W2762323924 date "2018-03-01" @default.
- W2762323924 modified "2023-10-05" @default.
- W2762323924 title "Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors" @default.
- W2762323924 cites W1541288193 @default.
- W2762323924 cites W1577256348 @default.
- W2762323924 cites W1904701389 @default.
- W2762323924 cites W1963735786 @default.
- W2762323924 cites W1964168965 @default.
- W2762323924 cites W1964674593 @default.
- W2762323924 cites W1975586526 @default.
- W2762323924 cites W1987790292 @default.
- W2762323924 cites W2002055708 @default.
- W2762323924 cites W2003922371 @default.
- W2762323924 cites W2018200772 @default.
- W2762323924 cites W2024060531 @default.
- W2762323924 cites W2025704344 @default.
- W2762323924 cites W2045468728 @default.
- W2762323924 cites W2069721696 @default.
- W2762323924 cites W2076959700 @default.
- W2762323924 cites W2079277602 @default.
- W2762323924 cites W2081420711 @default.
- W2762323924 cites W2084397606 @default.
- W2762323924 cites W2089659963 @default.
- W2762323924 cites W2095905361 @default.
- W2762323924 cites W2101709445 @default.
- W2762323924 cites W2104492856 @default.
- W2762323924 cites W2109662877 @default.
- W2762323924 cites W2111438996 @default.
- W2762323924 cites W2117645142 @default.
- W2762323924 cites W2122098299 @default.
- W2762323924 cites W2137340504 @default.
- W2762323924 cites W2141220295 @default.
- W2762323924 cites W2146354236 @default.
- W2762323924 cites W2154929945 @default.
- W2762323924 cites W2161062840 @default.
- W2762323924 cites W2162137602 @default.
- W2762323924 cites W2170428215 @default.
- W2762323924 cites W2316557706 @default.
- W2762323924 cites W2604825588 @default.
- W2762323924 cites W2729659033 @default.
- W2762323924 cites W2736583283 @default.
- W2762323924 cites W4292083457 @default.
- W2762323924 doi "https://doi.org/10.1016/j.eswa.2017.09.062" @default.
- W2762323924 hasPublicationYear "2018" @default.
- W2762323924 type Work @default.
- W2762323924 sameAs 2762323924 @default.
- W2762323924 citedByCount "154" @default.
- W2762323924 countsByYear W27623239242018 @default.
- W2762323924 countsByYear W27623239242019 @default.
- W2762323924 countsByYear W27623239242020 @default.
- W2762323924 countsByYear W27623239242021 @default.
- W2762323924 countsByYear W27623239242022 @default.
- W2762323924 countsByYear W27623239242023 @default.
- W2762323924 crossrefType "journal-article" @default.
- W2762323924 hasAuthorship W2762323924A5001328179 @default.
- W2762323924 hasAuthorship W2762323924A5053074581 @default.
- W2762323924 hasAuthorship W2762323924A5063750580 @default.
- W2762323924 hasAuthorship W2762323924A5085514504 @default.
- W2762323924 hasBestOaLocation W27623239242 @default.
- W2762323924 hasConcept C111030470 @default.
- W2762323924 hasConcept C111919701 @default.
- W2762323924 hasConcept C11413529 @default.
- W2762323924 hasConcept C118552586 @default.
- W2762323924 hasConcept C119857082 @default.
- W2762323924 hasConcept C124101348 @default.
- W2762323924 hasConcept C138885662 @default.
- W2762323924 hasConcept C148483581 @default.
- W2762323924 hasConcept C152124472 @default.
- W2762323924 hasConcept C153180895 @default.
- W2762323924 hasConcept C154945302 @default.
- W2762323924 hasConcept C15744967 @default.
- W2762323924 hasConcept C2776401178 @default.
- W2762323924 hasConcept C41008148 @default.
- W2762323924 hasConcept C41895202 @default.
- W2762323924 hasConcept C45374587 @default.
- W2762323924 hasConcept C522805319 @default.
- W2762323924 hasConcept C81917197 @default.
- W2762323924 hasConceptScore W2762323924C111030470 @default.
- W2762323924 hasConceptScore W2762323924C111919701 @default.
- W2762323924 hasConceptScore W2762323924C11413529 @default.
- W2762323924 hasConceptScore W2762323924C118552586 @default.
- W2762323924 hasConceptScore W2762323924C119857082 @default.
- W2762323924 hasConceptScore W2762323924C124101348 @default.
- W2762323924 hasConceptScore W2762323924C138885662 @default.
- W2762323924 hasConceptScore W2762323924C148483581 @default.
- W2762323924 hasConceptScore W2762323924C152124472 @default.
- W2762323924 hasConceptScore W2762323924C153180895 @default.
- W2762323924 hasConceptScore W2762323924C154945302 @default.
- W2762323924 hasConceptScore W2762323924C15744967 @default.
- W2762323924 hasConceptScore W2762323924C2776401178 @default.
- W2762323924 hasConceptScore W2762323924C41008148 @default.
- W2762323924 hasConceptScore W2762323924C41895202 @default.