Matches in SemOpenAlex for { <https://semopenalex.org/work/W2762367260> ?p ?o ?g. }
- W2762367260 endingPage "342" @default.
- W2762367260 startingPage "335" @default.
- W2762367260 abstract "Surface electromyography (EMG) signals have been widely used in locomotion studies and human-machine interface applications. In this paper, a regression model which relates the multichannel surface EMG signals to human lower limb flexion/extension (FE) joint angles is constructed. In the experimental paradigm, three dimensional trajectories of 16 external markers on the human lower limbs were recorded by optical motion capture system and surface EMG signals from 10 muscles directly concerned with the lower limb motion were recorded synchronously. With the raw data, the joint angles of hip, knee and ankle were calculated accurately and the time series of intensity for surface EMG signals were extracted. Then, a deep belief networks (DBN) that consists of restricted Boltzmann machines (RBM) was built, by which the multi-channel processed surface EMG signals were encoded in low dimensional space and the optimal features were extracted. Finally, a back propagation (BP) neural network was used to map the optimal surface EMG features to the FE joint angles. The results show that, the features extracted from multichannel surface EMG signals using DBN method proposed in this paper outperform principal components analysis (PCA), and the root mean square error (RMSE) between the estimated joint angles and calculated ones during human walking is reduced by about 50%. The proposed model is expected to develop human-machine interaction interface to achieve continuous bioelectric control and to improve motion stability between human and machine, especially for lower limb wearable intelligent equipment." @default.
- W2762367260 created "2017-10-20" @default.
- W2762367260 creator A5023212284 @default.
- W2762367260 creator A5026930299 @default.
- W2762367260 creator A5035804461 @default.
- W2762367260 creator A5074266365 @default.
- W2762367260 date "2018-02-01" @default.
- W2762367260 modified "2023-10-13" @default.
- W2762367260 title "Surface EMG based continuous estimation of human lower limb joint angles by using deep belief networks" @default.
- W2762367260 cites W1964812476 @default.
- W2762367260 cites W1970639711 @default.
- W2762367260 cites W1985385588 @default.
- W2762367260 cites W2000439420 @default.
- W2762367260 cites W2004158418 @default.
- W2762367260 cites W2031878187 @default.
- W2762367260 cites W2036663497 @default.
- W2762367260 cites W2039041360 @default.
- W2762367260 cites W2051642036 @default.
- W2762367260 cites W2052430436 @default.
- W2762367260 cites W2053628882 @default.
- W2762367260 cites W2055499229 @default.
- W2762367260 cites W2057170399 @default.
- W2762367260 cites W2062939404 @default.
- W2762367260 cites W2072588720 @default.
- W2762367260 cites W2078039548 @default.
- W2762367260 cites W2093188224 @default.
- W2762367260 cites W2100495367 @default.
- W2762367260 cites W2100830232 @default.
- W2762367260 cites W2116064496 @default.
- W2762367260 cites W2157602065 @default.
- W2762367260 cites W2157780858 @default.
- W2762367260 cites W2173194528 @default.
- W2762367260 doi "https://doi.org/10.1016/j.bspc.2017.10.002" @default.
- W2762367260 hasPublicationYear "2018" @default.
- W2762367260 type Work @default.
- W2762367260 sameAs 2762367260 @default.
- W2762367260 citedByCount "112" @default.
- W2762367260 countsByYear W27623672602018 @default.
- W2762367260 countsByYear W27623672602019 @default.
- W2762367260 countsByYear W27623672602020 @default.
- W2762367260 countsByYear W27623672602021 @default.
- W2762367260 countsByYear W27623672602022 @default.
- W2762367260 countsByYear W27623672602023 @default.
- W2762367260 crossrefType "journal-article" @default.
- W2762367260 hasAuthorship W2762367260A5023212284 @default.
- W2762367260 hasAuthorship W2762367260A5026930299 @default.
- W2762367260 hasAuthorship W2762367260A5035804461 @default.
- W2762367260 hasAuthorship W2762367260A5074266365 @default.
- W2762367260 hasConcept C104114177 @default.
- W2762367260 hasConcept C105795698 @default.
- W2762367260 hasConcept C118552586 @default.
- W2762367260 hasConcept C127413603 @default.
- W2762367260 hasConcept C139945424 @default.
- W2762367260 hasConcept C149635348 @default.
- W2762367260 hasConcept C150594956 @default.
- W2762367260 hasConcept C153180895 @default.
- W2762367260 hasConcept C154945302 @default.
- W2762367260 hasConcept C15744967 @default.
- W2762367260 hasConcept C170154142 @default.
- W2762367260 hasConcept C18555067 @default.
- W2762367260 hasConcept C2524010 @default.
- W2762367260 hasConcept C2776799497 @default.
- W2762367260 hasConcept C2777515770 @default.
- W2762367260 hasConcept C31972630 @default.
- W2762367260 hasConcept C33923547 @default.
- W2762367260 hasConcept C41008148 @default.
- W2762367260 hasConcept C48007421 @default.
- W2762367260 hasConcept C50644808 @default.
- W2762367260 hasConcept C97385483 @default.
- W2762367260 hasConceptScore W2762367260C104114177 @default.
- W2762367260 hasConceptScore W2762367260C105795698 @default.
- W2762367260 hasConceptScore W2762367260C118552586 @default.
- W2762367260 hasConceptScore W2762367260C127413603 @default.
- W2762367260 hasConceptScore W2762367260C139945424 @default.
- W2762367260 hasConceptScore W2762367260C149635348 @default.
- W2762367260 hasConceptScore W2762367260C150594956 @default.
- W2762367260 hasConceptScore W2762367260C153180895 @default.
- W2762367260 hasConceptScore W2762367260C154945302 @default.
- W2762367260 hasConceptScore W2762367260C15744967 @default.
- W2762367260 hasConceptScore W2762367260C170154142 @default.
- W2762367260 hasConceptScore W2762367260C18555067 @default.
- W2762367260 hasConceptScore W2762367260C2524010 @default.
- W2762367260 hasConceptScore W2762367260C2776799497 @default.
- W2762367260 hasConceptScore W2762367260C2777515770 @default.
- W2762367260 hasConceptScore W2762367260C31972630 @default.
- W2762367260 hasConceptScore W2762367260C33923547 @default.
- W2762367260 hasConceptScore W2762367260C41008148 @default.
- W2762367260 hasConceptScore W2762367260C48007421 @default.
- W2762367260 hasConceptScore W2762367260C50644808 @default.
- W2762367260 hasConceptScore W2762367260C97385483 @default.
- W2762367260 hasLocation W27623672601 @default.
- W2762367260 hasOpenAccess W2762367260 @default.
- W2762367260 hasPrimaryLocation W27623672601 @default.
- W2762367260 hasRelatedWork W1992153410 @default.
- W2762367260 hasRelatedWork W2006061919 @default.
- W2762367260 hasRelatedWork W2141253262 @default.
- W2762367260 hasRelatedWork W2376139493 @default.
- W2762367260 hasRelatedWork W2386293158 @default.