Matches in SemOpenAlex for { <https://semopenalex.org/work/W2762381254> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2762381254 abstract "This doctoral thesis addresses the problem of numerical integration of singular and near-singular functions, in two and three dimensions, using variable transformation methods. It includes the analysis of transformations with a geometric purpose, i.e., they map the physical domain onto a parent, standard domain, and transformations of an algebraic nature, with the purpose of softening the (near-)singularities in the integrand. Transformations used to map the physical element onto the parent domain are described in chapter 2. The most general case of a degenerate isoparametric map, such that it is homogeneous in one of its variables is presented, and its equivalence to the polar transformation is justified in the two-dimensional case. These maps induce a factorization of certain types of integral kernels into a radial and an angular part, allowing a separate, specific treatment of each factor. The two-dimensional singular integration problem is examined in chapter 3. The radial kernel is completely regularized by means of a new scheme that removes its singularity. Regarding the angular kernel, it is shown to have the same form as the one-dimensional near-singular kernel, and thus the same set of transformations can be successfully applied to both kernels. The two-dimensional near-singular kernel is the subject of chapter 4. Whilst the treatment of the angular kernel is exactly the same as in chapter 3, the radial kernel admits a whole new set of regularizing maps, taking advantage of the linear factor in the Jacobian of the degenerate isoparametric transformation. The generalization of the problem to adjacent triangles, in which the source point lies outside the integration domain is also considered. The extension of the singular integration to three-dimensional domains is covered in chapter 5. The treatment of the radial kernel is very similar as in chapter 3, whereas the bivariate angular kernel, restricted to the boundary of the bidimensional angular domain, behaves very similarly to the near-singular one dimensional kernel, and yet the same set of softening transformations as in chapter 3 and chapter 4 can be suitable re-utilized in this situation. Lastly, chapter 6 presents a proof of the optimal form of the well-known cubic transformation, employed as one of the most common alternatives to regularize the angular kernel in the three previous chapters. All proposed methods have been extensively tested from the numerical point of view, showing that they are able to outperform the existing methods for a broad variety of situations." @default.
- W2762381254 created "2017-10-20" @default.
- W2762381254 creator A5017485247 @default.
- W2762381254 date "2017-07-11" @default.
- W2762381254 modified "2023-09-26" @default.
- W2762381254 title "Transformation methods for the integration of singular and near-singular functions in XFEM" @default.
- W2762381254 hasPublicationYear "2017" @default.
- W2762381254 type Work @default.
- W2762381254 sameAs 2762381254 @default.
- W2762381254 citedByCount "1" @default.
- W2762381254 countsByYear W27623812542021 @default.
- W2762381254 crossrefType "journal-article" @default.
- W2762381254 hasAuthorship W2762381254A5017485247 @default.
- W2762381254 hasConcept C104317684 @default.
- W2762381254 hasConcept C12843 @default.
- W2762381254 hasConcept C134306372 @default.
- W2762381254 hasConcept C16171025 @default.
- W2762381254 hasConcept C185592680 @default.
- W2762381254 hasConcept C202444582 @default.
- W2762381254 hasConcept C204241405 @default.
- W2762381254 hasConcept C2524010 @default.
- W2762381254 hasConcept C28826006 @default.
- W2762381254 hasConcept C33923547 @default.
- W2762381254 hasConcept C36503486 @default.
- W2762381254 hasConcept C55493867 @default.
- W2762381254 hasConcept C74193536 @default.
- W2762381254 hasConceptScore W2762381254C104317684 @default.
- W2762381254 hasConceptScore W2762381254C12843 @default.
- W2762381254 hasConceptScore W2762381254C134306372 @default.
- W2762381254 hasConceptScore W2762381254C16171025 @default.
- W2762381254 hasConceptScore W2762381254C185592680 @default.
- W2762381254 hasConceptScore W2762381254C202444582 @default.
- W2762381254 hasConceptScore W2762381254C204241405 @default.
- W2762381254 hasConceptScore W2762381254C2524010 @default.
- W2762381254 hasConceptScore W2762381254C28826006 @default.
- W2762381254 hasConceptScore W2762381254C33923547 @default.
- W2762381254 hasConceptScore W2762381254C36503486 @default.
- W2762381254 hasConceptScore W2762381254C55493867 @default.
- W2762381254 hasConceptScore W2762381254C74193536 @default.
- W2762381254 hasLocation W27623812541 @default.
- W2762381254 hasOpenAccess W2762381254 @default.
- W2762381254 hasPrimaryLocation W27623812541 @default.
- W2762381254 hasRelatedWork W126633718 @default.
- W2762381254 hasRelatedWork W1480975507 @default.
- W2762381254 hasRelatedWork W154905018 @default.
- W2762381254 hasRelatedWork W1581276553 @default.
- W2762381254 hasRelatedWork W2030584138 @default.
- W2762381254 hasRelatedWork W2047842475 @default.
- W2762381254 hasRelatedWork W2275976881 @default.
- W2762381254 hasRelatedWork W2547709373 @default.
- W2762381254 hasRelatedWork W2622303002 @default.
- W2762381254 hasRelatedWork W2962735724 @default.
- W2762381254 hasRelatedWork W2963330314 @default.
- W2762381254 hasRelatedWork W2974287350 @default.
- W2762381254 hasRelatedWork W2984291132 @default.
- W2762381254 hasRelatedWork W3000948183 @default.
- W2762381254 hasRelatedWork W3005934465 @default.
- W2762381254 hasRelatedWork W3010061018 @default.
- W2762381254 hasRelatedWork W3034395576 @default.
- W2762381254 hasRelatedWork W3046490855 @default.
- W2762381254 hasRelatedWork W3100043881 @default.
- W2762381254 hasRelatedWork W2184086620 @default.
- W2762381254 isParatext "false" @default.
- W2762381254 isRetracted "false" @default.
- W2762381254 magId "2762381254" @default.
- W2762381254 workType "article" @default.